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Abstract: In order to enhance video action
recognition accuracy, we introduce an
enhanced model built upon the GSF-
ResNet-50 to address the challenges in fine-
grained recognition tasks: the Fine-Grained
Spatio-Temporal Feature Learning
Network (FSTFL-Net). This model learns
rich and detailed spatio-temporal features
while maintaining a low computational
overhead to capture local representations
between similar actions and subtle
differences between actions. FSTFL Net
introduces a spatiotemporal correlation
(STC) module, which can find the spatial
neighborhood represented by each local
region, the correlation between adjacent
and non adjacent frames, and convert these
correlations into relationship values to
establish spatial connections within the
same frame and temporal connections
between different frames. This enables
FSTFL Net to improve its discriminative
ability for fine-grained images, thereby
enhancing recognition ability. In a series of
rigorous tests, the suggested approach has
demonstrated a notable enhancement in
recognition precision across four datasets
dedicated to action recognition. Specifically,
on the Sth-Sth V1 dataset, the FSTFL-Net
has achieved a 2.65% increase in Top-1
accuracy compared to the initial model.

Keywords: Fine-grained Spatio-temporal
Feature; Action Recognition; Spatio-
temporal Features; Spatio-temporal
Correlation; Top-1 Accuracy

1. Introduction
Action recognition requires not only modeling
the spatio-temporal information, but also
distinguishing the subtle local differences
between highly similar actions. Drawing
inspiration from the extensive utilization of
neural networks within the realm of image

processing, CNNs adapt to analyze video data,
and find cross-frame spatio-temporal
convolutions, enabling the extraction of
temporal features alongside spatial information.
However, current methods face challenges in
discerning the nuanced distinctions among
highly similar actions, such as the local leg
posture movements, where the subtle variances
between walking, jogging, and running are
difficult for previous models to detect.
Therefore, the established model needs not
only to capture the semantic information in
video accurately, but also to perform fine-
grained action analysis through the overall
appearance and motion differences.
Recently, several attempts have been to utilize
differences in visual tempo to distinguish
similar actions. Initial models such as the Two-
Stream[1] and SlowFast[2] networks were
foundational in advancing the technology for
recognizing actions, SlowFast[2] processes a
64-frame input by sampling at varying
temporal frequencies, using a 16-frame
interval for its slow pathway and a 4-frame
interval for the fast pathway. This results in an
input composed of sequences with 4-frame and
16-frame samples. The architecture's backbone
subnetworks concurrently integrate
information from both fast and slow tempos,
enhancing prediction accuracy significantly.
However, this method also leads to a
substantial rise in computational demands due
to the differing sampling rates. To further
optimize the visual tempo recognition model,
D. Zhang, Ceyuan Yang, et al. have proposed
the network architectures such as DTPN[3],
TPN[4], etc., where the TPN[4] takes
advantage of the hierarchical structure of
features formed within the network to process
input frames supplied at a single rate, extract
features at multiple levels and aggregate them.
However, the efficacy of this approach is
intricately linked to the network's capacity for
modeling, which makes the model less capable
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of capturing fine-grained information.
To enable the network to extract fine-grained
information in video frames better, we propose
an improved model: Fine-Grained Spatio-
Temporal Feature Learning Network (FSTFL-
Net), as shown in Figure 1. The network
utilizes the GSF-ResNet-50[5] as its backbone,
embeds the Spatio-Temporal Correlation (STC)
Module subsequent to the res3 layer, and
leverages the output features from the res2 and

res3 layers as module inputs. It performs end-
to-end learning without the need for additional
supervision and is capable of extracting pixel-
level fine-grained temporal dynamic
information in long and short video sequences.
Our enhancements bolster the model’s
effectiveness at capturing minor local
differences between similar actions, thereby
improving the model’s expressiveness and
generalization capabilities.

Figure 1. Fine-Grained Spatio-Temporal Feature Learning Network (FSTFL-Net), ⊕ Means
Element-Wise Addition

Our main contribution is the introduction of
the STC module (see Figure 2). Given a set of
frame sequences, this module establishes the
spatial structure relationship within the frame
by performing correlation analysis on the
spatial neighborhood and temporal
neighborhood of each local area, at the same
time, it determines the temporal feature pairs
of adjacent frames and non-adjacent frames,
applies correlation calculations, and constructs
correlation tensors for each set of features.
Subsequently, through the MLP network, high-
level semantic concepts and pixel-level fine-
grained temporal dynamic information are

extracted from the low-level features of the
video frame. Finally, feature fusion transforms
the filtered tensor information into motion
features. In detail, this module takes the video
feature tensor I as input, it transforms it into
the correlation tensors Sspatio and Stemporal by
calculating the similarity of the spatial
neighborhood, the adjacent frames, and the
non-adjacent frames. Then, it extracts the
feature tensors Fspatio and Ftemporal from the
correlation tensors. Finally, it obtains the final
tensor Z, matching the input I dimension,
through feature fusion.

Figure 2. Spatio-Temporal Correlation (STC) Module

2. Related Work

2.1 Based Methods
The recognition of actions is crucial in fields

like intelligent surveillance and understanding
video sequences and healthcare. The primary
objective here is to accurately categorize
videos into their respective classes. To enhance
the precision of classification, extensive
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research has focused on leveraging deep neural
networks for effectively capturing both the
semantic and temporal information in videos.
The advent of 2D CNNs and 3D CNNs has
significantly propelled the progress in action
recognition technology. The two-stream
network[1] incorporates two networks to
separately process RGB appearance features
and optical flow motion data. This model
employs an average pooling strategy for
spatio-temporal integration, addressing the
challenge of short video analysis. Nonetheless,
it struggles with analyzing longer video
sequences due to its calculation of optical flow,
a process that is both time-intensive and
incompatible with real-time applications.
Another aspect, 3D CNNs introduce the use of
3D convolutional kernels to concurrently get
spatial and temporal features, thereby
significantly enhancing motion information
capture and recognition accuracy, albeit at a
high computational cost.
To boost computational efficiency, there has
been a shift towards optimizing both 2D and
3D CNNs and exploring hybrid networks. For
instance, TSN[6] suggests sampling video
clips from uniformly divided segments; TRN[7]
introduces an interpretable network that
models frame dependencies across various
timescales for temporal reasoning; TSM[8]
incorporates a shift module to slide certain
input feature channels along the temporal axis,
simulating 3D convolutions with 2D
operations and thus facilitating inter-frame
communication; TAM[9] presents a novel two-
tier adaptive modeling approach that separates
dynamic kernels into position-sensitive
mappings and position-invariant aggregation
weights, efficiently capturing short-term
details and long-term structures. While these
hybrid models enable 2D CNNs to reach
recognition accuracies comparable to those of
3D CNNs, the issue of fine-motion analysis
remains largely unaddressed.

2.2 Action Visual Tempo Modeling
Video actions need to be recognized through
frame sequences. However, the diversity and
similarity of actions, coupled with the presence
of actions with varying visual tempos such as
walking, jogging, and running, make action
recognition increasingly challenging. People
have started studying and exploring visual
tempo modeling in recent years. Among these

efforts, SlowFast[2] employs a dual-pathway
approach, a high-resolution but slower-
processing convolutional neural network
(CNN) for static elements, and a faster yet
lower-resolution CNN for dynamic elements.
This method effectively balances detail and
speed in video analysis, respectively, and fuses
them through lateral connections. While
different sampling rates can characterize video
samples at various visual speeds, processing
frames with two independent networks
imposes a significant computational burden.
TPN[4] initiates the process by deriving
features at multiple levels from the primary
network. It then refines these features by
modulating both spatial and temporal
dimensions. Subsequently, it employs the
Information Flow module for advanced
processing and integrates all the features to
produce the ultimate result. TPN[4] requires
only a single network implementation that is
compatible with different network
architectures. However, the backbone
network's temporal modeling ability is limited,
so it does not fully exploit the low-level
features.

2.3 Motion Feature Learning
While leveraging external optical flow for
motion information extraction significantly
enhances the accuracy of action recognition,
employing a dual-stream (RGB and optical
flow) framework incurs substantial
computational expenses. Consequently,
researchers have shifted towards developing
methods that directly extract motion features
from RGB frame sequences within the neural
network architecture. For instance, MFNet[10]
enables end-to-end training to derive spatio-
temporal information from adjacent frames.
Similarly, MotionSqueeze[11] identifies
similarities between consecutive frames to map
out correspondences, which are then converted
into motion features. These approaches
virtually eliminate the need for extra
computational resources. However, they
primarily focus on temporal features extracted
from immediately successive frames, posing
challenges in comprehensively understanding
videos with longer sequences.

3. Proposed Method
In this segment, we will delve into the various
components that make up the Spatio-Temporal
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Correlation (STC) Module and the intricate
details of its implementation. The steps for the
module’s implementation are illustrated in
Figure 2:
(1) Consider a neural network that takes a
video feature tensor I ∈ RC×T×X×Y as input.
The network transforms I into spatial
correlation tensors Sspatio and temporal
correlation tensors Stemporal by calculating the
similarity of spatially adjacent and non-

adjacent frames.
(2) The correlation tensor is processed by a
Multilayer Perceptron (MLP) to extract both
the high-level semantic information and the
detailed temporal dynamics at the pixel level
from both adjacent and non-adjacent frames,
resulting in the generation of the feature
tensors Fspatio and Ftemporal.
(3) By feature fusion, we obtain the final
tensor Z ∈ RC×T×X×Y , which has the same size
as the input V.

Figure 3. Spatio-Temporal Correlation Calculation Layer

3.1 Correlation Calculation
We utilize the spatio-temporal correlation
calculation layer (see Figure 3). The process
involves executing a correlation operation to
determine the similarity mapping of proximate
points within the same frame as well as the
similarity mapping across two frames. This
method facilitates the acquisition of low-level
features for each frame, along with pixel-level
detailed temporal dynamic data. The term
"correlation calculation layer" denotes a neural
network layer designated for assessing the
correlation between two feature maps. The
underlying implementation principle are
outlined as follows:
Given two feature maps I1 and I2 both

residing in RC×X×Y , where C represents the
channel dimension, X and Y denote the spatial
dimensions, according to the definition of the
correlation calculation layer, the correlation
matrix R(d1,d2,i,j) ∈ R(2D+1)×(2D+1)×X×Y ,
between the two feature maps, where D is the
maximum displacement parameter, which
determines the maximum distance that can be
compared between each region in the two
feature maps, The term R(d1,d1,i,j) denotes the
correlation coefficient between the feature
vector at position (i, j) in the first feature map
and the feature vector (i + d1, j + d2) in the

second feature map. This coefficient quantifies
the linear association's strength between two
variables, with an interval range of (-1,1). A
correlation coefficient close to 1 signifies a
robust positive correlation, whereas one that
approaches -1 reflects a significant negative
relationship. This rewording retains the
original meaning but presents it with different
terminology to reduce redundancy. In cases
where the two variables do not exhibit a linear
relationship, the correlation coefficient tends
towards 0.
The correlation calculation layer employs
cosine similarity to serve as the correlation
coefficient. Cosine similarity means the cosine
between two vectors, indicating their
directional similarity. The calculation of cosine
similarity is based on the following formula:

cosine similarity(x, y)

= x⋅y
∥x∥∥y∥

= i=1

n
 � xiyi

i=1

n
 � xi

2
i=1

n
 � yi

2

(1)

Where x and y represent two n-dimensional
vectors. The correlation calculation layer can
be implemented using the following steps:
(1) Pad the second feature map with D pixels
in four directions so that the correlation can
also be calculated at the boundary.
(2) Iterate over all possible displacement
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values (d1,d2) corresponding to different
positions in the output matrix.
(3) For each displacement value (d1,d2), align
the first and the second feature map according
to the displacement value, and then calculate
the dot product between the two feature maps,
resulting in a X × Y submatrix.
(4) Normalization of each submatrix occurs
through division by the multiplication of the
norms of the related feature maps, yielding an
X × Y submatrix. This submatrix quantifies the
cosine similarity between the pair of feature
maps.
(5) Concatenate all the submatrices to obtain a
(2D + 1) × (2D + 1) × X × Y output matrix,
which represents the correlation matrix
between the two feature maps.
The spatio-temporal correlation calculation
layer is implemented based on the principle of
the correlation calculation layer. For a given
set of sequences, use I(t) ∈ RC×X×Y and I(t+l) ∈
RC×X×Y to represent the input feature map pairs
on a certain interval L . Then, calculate the
similarity score at each position of F(t) and
F(t+l). The formula is:

S I t , I t+l =
cosine similarity(I(i,j)

(t) , I(i+d1,j+d2 ,)
(t+l) ) (2)

S ∈ RT×X×Y×L× 2D+1 × 2D+1

Here I(t) and I(t+l) refer to the tensors of the t-

th and t+l-th frames in a sequence,
(t)

(i, j) is the

query coordinate, and
(t + l)

(i + d1, j + d2) is the

spatio-temporal offset of the query, we limits
its offset to its neighborhood through practice,
with (d1,d2) ∈ [ − d1, d1] × [ − d2, d2, finally,
we specify d1 = ceil(X/2) , d2 = ceil( Y 2) ,
where ceil() is the ceiling function, this
process is to convert the C-dimensional feature
I(x,y) into the (2D + 1)2 -dimensional relation
feature S(x,y) . Among them, when l = 0 , the
tensor S represents spatial similarity,
extracting semantic information in video
frames; when l = 1 , the tensor S represents
adjacent-frame similarity, collecting motion
information of short video sequences; when
l ≠ 0,1 , the tensor S represents non-adjacent
frames similarity, capturing motion
information from farther away.

3.2 Feature Extraction
To extract motion features from the correlation
tensor S, we implement a multilayer
perceptron (MLP) approach capable of
executing non-linear transformations on the
input dataset and learn to map the high-
dimensional correlation tensor to the a low-
dimensional feature tensor.

Figure 4. Feature Extraction
We separately perform MLP transformation on
the spatial correlation tensor Sspatio and the
temporal correlation Stemporal , and obtains the
spatial feature tensor Fspatio and the temporal
feature tensor Ftemporal (see Figure 4). Since
the dimension of the correlation tensor S is
high, for the convenience of subsequent
processing, we adjust it to S ∈
RT×X×Y×L×(2D+1)2 , where T represents the
temporal dimension, X and Y denote the
spatial dimensions, L denote the similarity

dimension, and (2D+1) is the feature map
dimension. Then, we use a method called n-
mode tensor product, which can perform
matrix multiplication on the specified
dimension, and broadcast on other dimensions.
Broadcasting automatically matches tensors of
different shapes, which can copy and expand
tensors without increasing memory overhead.
For the tensor S ∈ RT×X×Y×L×(2D+1)2 , the
perceptron f ⋅ can be represented as:

f(s) = ReLU (S×5Wϕ) (3)
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Here, the symbol ×5 represents the n-mode
tensor product along the fifth dimension,
Wϕ ∈ RC'×(2D+1)2 represents the perceptron
parameter, and ReLU[12] a non-linear
activation function. The tensor f(s) ∈
RT×X×Y×C' is a feature tensor, with its last
dimension representing the motion feature
dimension.
To extract higher-level motion features, we
employ multiple perceptrons to perform
function composition, which means taking the
output of one function as the input to another
function. For instance, if there are n
perceptrons (f1, f2, . . . , fn) , their composition
can be expressed as:

F = (fn ∘ fn−1 ∘ . . . ∘ f1)(x)
= fn(fn−1(…(f1(x))…)) (4)

Where ∘ denotes the compound operation. The
output F ∈ RT×X×Y×CF is a feature tensor,
whose last dimension is the final motion
feature dimension. This approach encodes
displacement information and enables direct
access to similarity values, offering advantages
in learning motion distributions.

3.3 Feature Fusion
We aggregate the feature tensor F ∈ RT×X×Y×CF,
extracted through displacement mapping and
similarity mapping, to facilitate its integration
into the downstream layer. The tensor F
undergoes processing through four depth-wise
separable convolution layers: a 1 × 7 × 7
layer followed by three 1 × 3 × 3 layers,
resulting in the generation of motion features Z
that match the V dimension, as depicted in
Figure 5. Compared with two-dimensional
convolution, depth-wise separable convolution
has lower parameter number and
computational cost without sacrificing
performance. Batch normalization[13] and
ReLU[12] are applied after all depth-wise
(DW) and point-wise (PW) layers to enhance
the network’s non-linear expression ability.
The feature fusion process interprets the
semantics of displacement mapping and
similarity mapping through feature
transformation, ultimately aggregates them.
Finally, we utilize the STC module as a
residual block, combine the Z generated by
this module with the input feature I through
element-wise addition, and embed it into the
GSF-ResNet-50[5] network model, thereby
forming a fine-grained spatio-temporal feature

learning network (FSTFL-Net).

Figure 5. Feature Fusion

4. Experiments
For the sake of fairness, the baseline model is
GSF-ResNet-50[5], and it is tested on four
different datasets, namely Kinetics-400[14],
UCF-101[15], and Sth-Sth V1 & V2[16], to
showcase the generality of FSTFL-Net.
Meanwhile, we perform numerous ablation
study on the Sth-Sth V1 to analyze the best
embedding position of the STC module. RGB
frames are used in our experiments to reduce
the computational cost. These experimental
analyses lay the foundation for our work.

4.1 Datasets
We utilize various datasets FSTFL-Net,
demonstrating its broad applicability. The
datasets are introduced as follows.
(1) Something-Something V1 & V2 (Sth-Sth
V1 & V2: These two datasets are large-scale
action recognition datasets, both with 174
categories. Sth-Sth V1 comprises 108499
videos, while its extended version Sth-Sth V2
contains 220847 videos. The biggest difference
from general datasets is that this dataset
focuses especially on temporal relationships,
such as “put sth from left or right”.
(2) Kinetics-400 and UCF-101: Kinetics-400
contains a wide range of subject-as-human
behaviors with 400 categories each with at
least 400 video clips, covering a wide range of
categories. The UCF-101 dataset originates
from YouTube and encompasses 101 distinct
categories, featuring a total of 13320 video
clips. The data is relatively less and appeared
earlier. Compared with Sth-Sth V1 & V2,
these two datasets focus more on
understanding scene information, and have
weak temporal coherence.

4.2 Training
We initialize the ImageNet pre-training weight
with ResNet50[17] (refer to Table 1), using the
same training method as GSF-ResNet-50[5].
We utilize a frame sampling approach,
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selecting either 8 or 16 frames per video for
action prediction. The optimization algorithm
utilized is SGD, momentum of 0.9, and the
batch size of 32. The initial learning rate is
established at 0.01, with a weight decay of
10−4 . We adopt a cosine annealing learning
rate strategy, incorporating a 10-epoch
warmup period. Data augmentation techniques
proposed by L. Wang et al.[18], such as
random scaling, cropping, and flipping, are
employed. For Sth-Sth V1 & V2 and Kinetics
400 datasets, dropout of 0.5 is used for training
over 60 epochs. For training on the UCF-101,
we further refine the pre-trained model on the
Kinetics 400, and set dropout to 0.8 to prevent
overfitting, training for 40 epochs.

Table 1. We Used the Same Training
Strategy As GSF-ResNet-50 to Initialize the
ImageNet Pre-Training Weights with the

ResNet50[17]
Stage Layer Output size
raw - 224×224

conv1 7×7,stride 2,2 112×112
pool1 3×3 max,stride 2,2 56×56

res2

1 × 1,64
3 × 3,64
1 × 1,256

×3 56×56

res3

1 × 1,128
3 × 3,128
1 × 1,512

×4 28×28

res4

1 × 1,256
3 × 3,256

1 × 1,1024
×6 14×14

res5

1 × 1,512
3 × 3,512

1 × 1,2048
×3 7×7

Global average pool,fc 1×1

4.3 Testing
For the Sth-Sth V1 & V2 datasets, we adopted
two testing schemes. Scheme one involves
using an 8 or 16-frame clip as input from the
video, followed by cropping the central part
(224×224) of the video. This testing scheme
was more efficient. Scheme two, three
224×224 cropping methods to test from 10
randomly extracted clips, providing higher
prediction accuracy. Our evaluation included
both the forecast for an individual clip and the
collective average prediction derived from ten
randomly selected clips. The evaluation on the
Kinetics 400 involved averaging the

predictions from 10 clips uniformly sampled
from each video. We evaluated two clips
uniformly extracted from each video on the
UCF-101.

4.4 Experimental Analysis

4.4.1 The comparative results with the baseline
models
To assess the performance of the proposed
FSTFL-Net, we applied identical training and
testing methodologies as the baseline GSF-
ResNet-50 network. As shown in Table 2, on
the large-scale Kinetics-400 dataset that
focuses on scene information, FSTFL-Net
improved the Top-1 accuracy slightly by
0.74% compared to the GSF-ResNet-50
network. However, on the Sth-Sth V1 & V2,
which focus on temporal information, the
FSTFL-Net improved the Top-1 accuracy by
2.65% and 1.07%. This demonstrates that that
FSTFL-Net significantly enhanced the
capability to capture fine-grained information
in both short and long video sequences.
Table 2. The Comparison between the GSF
and FSTFL-Net on Different Datasets When
Inputting 8 Frames, the Symbol “-” Means

no Results are Given

Dataset Model Top-
1(%)

Top-
5(%)

ΔTop-
1(%)

Sth-Sth V1
GSF-ResNet-

50 48.36 -
+2.65

Ours 51.01 79.56

Sth-Sth V2
GSF-ResNet-

50 61.46 666 +1.07
Ours 62.53 88.04

Kinetics-
400

GSF-ResNet-
50 74.74 -

+0.74
Ours 75.48 92.12

4.4.2 Comparison with domestic and
international advanced level
To verify the generality of the temporal
modeling capability of FSTFL-Net, we
compared its performance with others on the
Sth-Sth V1 & V2, Kinetics-400, and UCF-101.
As illustrated in Tables 3, 4 and 5.
Table 3 compares the recognition performance
of FSTFL-Net and other methods on the Sth-
Sth V1 & V2. To ensure a fair comparison,
most experiments utilized ResNet50 as the
backbone. This table is divided into two
sections: the first part lists the results of some
methods employing 2D CNN or 3D CNN to
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achieve video classification, and the second
part shows the performance of FSTFL-Net. As
shown in table 3, when the number of input
frames is consistent, our method demonstrates
slightly higher accuracy compared to 2D CNN
models like TEA and TANet, as well as 3D
CNN models like I3D on the Sth-Sth V1.
While Martinez et al. achieved superior
performance using I3D ResNet-152 compared
to our method, we maintained a slight
advantage when utilizing ResNet50 as the
backbone. Overall, the temporal modeling
capabilities of FSTFL-Net have been
significantly enhanced.
Table 4 showcases a performance evaluation
between FSTFL-Net and various other models
on the Kinetics-400, highlighting differences
in results. The table indicates that when
FSTFL-Net utilizes 8 frames as input, it
achieves a Top-1 accuracy of 75.48%,
surpassing the R(2+1)D model by 1.18%,
which uses 32 frames as input. When all

models employ 16 frames as input, FSTFL-Net
outperforms models like TEA, TSM, and other
models slightly. In comparison to the STM
model, the accuracy is enhanced by 2.51%
with only a 0.05% increase in GFlops. Even
when using 8 frames as input, FSTFL-Net’s
accuracy is still better than the STM model
that uses 16 frames as input. This shows that
FSTFL-Net has excellent feature extraction
ability, which can effectively extract and
express the semantic content and dynamic
features of video sequences.
Table 5 provides compares of FSTFL-Net with
various methods on the UCF-101 dataset.
Following the same processing method as
TSM and TEA, the table displays the average
TOP-1 accuracy of three different cropping
methods. Compared with the TEA method, our
method still has room for improvement. It
holds a slight advantage over the 3D CNN
methods (like I3D, P3D) and the 2D CNN
methods (like TSM) and among others.

Table 3. Performance Comparison with Domestic and International Advanced Level on Sth-Sth
V1 & V2, the Symbol "-" Indicates that No Results are Given

Method Backbone Frames ×Crops×
Clips Params(M) GFLOPs

Sth-Sth V1 Sth-Sth V2
Top-
1(%)

Top-
5(%)

Top-
1(%)

Top-
5(%)

TSN BN-
Inception 16 × 1 × 1 10.45 32.87 × 1 ×

1 17.44 - 32.71 -

TSM ResNet-50 16 × 1 × 1 24.3 65 × 1 × 1 47.3 - 61.2 -

bLVNet-TAM bLResNet-
50 16 × 1 × 2 25 47 × 1 × 2 48.4 78.8 61.7 88.1

CorrNet ResNet-101 32×1 × 10 NA 224 × 1 × 10 51.1 - - -
TPN ResNet-50 8 × 10 × 1 NA NA 49.0 - 62 -
I3D ResNet-50 32 × 1 × 2 28 153 × 1 × 2 41.6 72.2 - -

NL-I3D ResNet-50 32 × 1 × 2 35.3 168 × 1 × 2 44.4 76.0 - -
TEA ResNet-50 8× 1 × 1 NA 35 × 1 × 1 48.9 78.1 - -
TEA ResNet50 8×3×10 NA 35 × 3 × 10 51.7 80.5 - -
MSNet ResNet-50 8 × 1 × 1 24.6 34 × 1 × 1 50.9 80.3 63.0 88.4
MSNet ResNet-50 16 × 1 × 1 24.6 67 × 1 × 1 52.1 82.3 64.7 89.4
GST ResNet-50 8 × 1 × 1 21 29.5 × 1 × 1 47.0 76.1 61.6 87.2
GST ResNet-50 16 × 1 × 1 21 59 × 1 × 1 48.6 77.9 62.6 87.9
GSF ResNet-50 8 × 1 × 1 23.97 33.4 × 1 × 1 48.36 - 61.46 -
GSF ResNet-50 16 × 1 × 1 23.97 66.8 × 1 × 1 50.37 - 63.41 -
TANet ResNet50 8 × 1 × 1 NA 33 × 1 × 1 47.3 75.8 60.5 86.2
TANet ResNet50 16 × 1 × 1 NA 66 × 1 × 1 47.6 77.7 62.5 87.6

Martinez et al. ResNet-50 NA NA NA 50.1 - - -
Martinez et al. ResNet-152 NA NA NA 53.4 - - -

Ours ResNet-50 8 × 1 × 1 23.99 35.3 × 1 × 1 51.01 79.56 62.53 88.04
Ours ResNet-50 16 × 1 × 1 23.99 70.6 × 1 × 1 52.45 81.06 64.25 89.13
Ours ResNet-50 32 × 1 × 1 47.98 105.9 × 1×1 53.21 81.93 66.12 90.05
Table 4. Comparisons with Other Methods on the Kinetics-400, "N/A" Indicates That No

Results are Given
Method Pretrain Frame FLOPs × Views Kinetics-400

Top-1(%) Top-5(%)
I3D Scratch 64 108G × N/A 72.1 90.3

R(2+1)D Sports-1M 32 152G × 10 74.3 91.4
SlowFast Scratch 8+32 106G × 30 77.9 93.2
TPN Scratch 32 N/A 78.9 93.9
TSM ImageNet 16 65G × 30 74.7 91.4
STM ImageNet 16 67G × 30 73.7 91.6
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TEA ImageNet 16 70G × 30 76.1 92.5
TANet-50 ImageNet 8 43G×30 76.3 92.6
TANet-50 ImageNet 16 86G×12 76.9 92.9

GSF ImageNet 16 N/A 74.74 -
Ours ImageNet 8 35.3G× 30 75.48 92.12
Ours ImageNet 16 70.6G × 30 76.21 92.84

Table 5. Comparisons with Other Methods
on the UCF-101 Dataset

Method Pretrain Backbone UCF-101

P3D ImageNe ResNet50 88.6%
I3D Kinetics Inception V2 95.6%
TSM Kinetics ResNet50 96.0%
TEA Kinetics ResNet50 96.9%
STM Kinetics ResNet50 96.2%
Ours Kinetics ResNet50 96.86 %

Table 6. Comparison of Different Inputs on
the Final Result after the STC Module is

Placed in the Designated Layer
Layer Frames Top-1(%) Top-5(%)

baseline 8 48.36 -

res2 8 48.41 77.35

res3 8 51.01 79.56

res4 8 49.25 78.19

res5 8 49.13 78.02

res2−3 8 50.86 79.13

res2−4 8 50.80 79.06

res2−5 8 50.77 78.95

Figure 6. Grad-CAM Visualization
Activation Map

4.4.3 Ablation study
To assess the impact of the STC module's
embedding position within the baseline on the
model's recognition capabilities, we conducted
an ablation experiment on the Sth-Sth V1. The
experiment involved sampling 8 frames, a
batch size: 32, the momentum: 0.9, learning
rate: 0.01, and a cosine learning rate schedule
with a warmup period of 10 epochs for
adjusting the learning rate. Additionally, a
dropout rate of 0.5 was applied to prevent
overfitting, and the training duration was set to
60 epochs. The results, presented in table 6,
indicate that using the outputs of res2 and res3
as inputs to the STC module enables FSTFL-

Net to achieve optimal performance. This is
attributed to the output of res3 containing
richer low-level features and capturing some
temporal dynamic information.
4.4.4 Empirical analysis
To further understand the working principle of
the FSTFL-Net model, when the input is 8
frames, we use Grad-CAM for visualization on
the Sth-Sth V1. The visualization of the
activation maps of FSTFL-Net, as shown in
Figure 6, indicate that the model adeptly
identifies the regions associated with the action.

5. Conclusion
An essential challenge in the realm of video
understanding lies in analyzing fine-grained
actions, which are those that look similar but
have subtle differences. We introduce an
enhanced version of FSTFL-Net, which can
effectively utilize spatial information, short
video sequence information, and long video
sequence information, to achieve fine-grained
action understanding. The key innovation is to
extract fine-grained temporal dynamic
information, which enables the model to
distinguish highly similar actions. The findings
showcase the effectiveness of FSTFL-Net in
the domain of video understanding.
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