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Abstract: Consider a T-A-D game scenario
in space: the target strives to evade the
attacker, the defender intercepts the target,
and the attacker must both avoid the target's
counterattack and attempt to hit the target.
It is assumed that all entities are intelligent,
anticipating the next state of their
adversaries and making the most suitable
maneuvering strategy based on this
prediction. This paper presents a 3-
dimensional linear-quadratic differential
game guidance law for target-attacker-
defender scenarios, which is more intelligent
than traditional guidance laws and is
suitable for future intelligent environments.
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1. Introduction

The theory of differential games was first
introduced by Isaacs in 1966 [1]. Subsequent
scholars have extensively discussed and studied
this theory in pursuit-evasion problems (or their
derivatives) [2], and it has been successfully
applied in the field of missile guidance [3].
Over the years, the main contributions of
differential game guidance laws in the field of
air combat are as follows:

Pursuit-evasion models are categorized based
on the number of pursuers and evaders into
one-pursuer-one-evader (1v1), N-pursuers-one-
evader (Nvl), one-pursuer-M-evaders (1vM),
and N-pursuer-M-evaders (NvM) [4].

The application of pursuit-evasion models in
the field of air combat began relatively early.
The earliest missile pursuit-evasion games were
established based on aircraft pursuit-evasion
models. Due to the limitations of computational
power and theory, the aircraft were treated as
mass points moving at a constant speed within
a plane, with trajectories considered as
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segmented curves [5]. In 1980, Shinar modeled
the missile-aircraft pursuit-evasion problem,
establishing a two-body dynamic model, setting
initial  missile-aircraft  orientations, and
extending the pursuit-evasion from two
dimensions to T-A-D dimensions [6]. In 1987,
Moritz [7] introduced constraints such as
ballistic inclination and velocity inclination
limits when establishing a missile two-body
pursuit-evasion model. Since then, scholars
have focused their research on two main
aspects: making the models more realistic and
improving the accuracy of existing models.

In terms of establishing models based on real
combat scenarios, most studies treat the missile
as a mass point. Under the 1v1 framework, the
focus is mainly on establishing more realistic
state variable constraints, such as constraints on
the missile's turning radius and maximum lift
[8], wvelocity constraints [9], and lateral
acceleration constraints [10]. Based on this, the
two-body pursuit-evasion problem is extended
to two two-body pursuit-evasion problems, i.e.,
the T-A-D confrontation model [11, 12]. Under
the Nv1, Mvl, and MvN frameworks, scholars
have proposed various boundary value
constraints, such as pursuit area constraints
[13], simultaneous arrival constraints for N
pursuers [14], and area coverage constraints
[15].

The subsequent arrangement of this paper is as
follows: The second section models the target-
attacker-defender (T-A-D) game; the third
section derives the differential game guidance
law for the T-A-D game using the linear-
quadratic differential game method; the fourth
section simulates and analyzes based on this
guidance method; and the fifth section presents
the conclusions.

2. T-A-D Game Kinematic Modeling
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2.1 Assumptions

Given that 3-dimensional motion can be
decomposed into two orthogonal planar
motions, this study focuses solely on the
motion within the pitch plane and makes certain
idealized assumptions:

(1) The relative motion trajectories of the
attacker with respect to the target and the
defender with respect to the attacker can be
linearized near the initial target line of sight;

(2) The attacker, target, and defender are all
considered as point masses;

(3) Each entity has access to precise
information about each other;

(4) The velocity and maximum aerodynamic
load of the attacker and defender during the
terminal guidance phase are constant.

2.2 Nonlinear Kinematic Model
The positional relationship and parameter
description of the target, attacker, and defender

are shown in Figure 1.
y A

Figure 1. Relative Motion Relationship of
Target, Attacker, and Defender within the
Plane

The relative motion of the target T with respect
to the attacker A:

Pr="V; COS(7T _QT)_VA cos (7A _er) (1)
pTéT =V; sin (7/T _HT)
—V,sin(y,—6,)

The relative motion of the defender D with
respect to the attacker A:

Pp=V, COS(yA -0, )_VD cos (7[) -0, ) 3)
pDéD =V, sin (7A _HD)

~V,sin(y,-6,)
In the final stage of engagement, it is assumed
that the velocities of the attacker, defender, and
target are constant. The remaining flight time of
the attacker A to the target T near the collision

()

(4)

http://www.stemmpress.com

triangle can be expressed as follows:

¢, =Lr (5)

where p, is the initial distance and —p,, is the

approach velocity.
Similarly, the remaining flight time of the
defender D to the attacker A:

t, =0 (6)
~Pp
where  p,, is the initial distance and —p,, is
the approach velocity.
If the control lag of the autopilot is not
considered, then:
aA

y, =4 <)
A
. a,
==L (8)
Vb v,
=L (9
Vr v

2.3 Linear Kinematic Model

Linearizing the aforementioned nonlinear
motion model near the collision triangle, the
assumptions are:

x=lp, P a, a,] (10>
x,=[pp pp, a, ap] (1D

The state-space equations for the T-A-D game
are then:

X, =A4x +Bla, a;] (12
X, =A,x,+B)la, a,] (13>

where,
01 0 O [0 0]

4= 0 0 a, a; B - 00
0 0 -1 0 1 0
0 0 -1 10 1)
0 1 0 [0 0]

4= 00 a, a, B, - 00
0 0 -1 O 1 0
0 0 0 -1 10 1

Introducing the zero effort miss (ZEM) method
to reduce the order of the above model and
predict the terminal miss distance for this state:

z, =L ®x, (14)
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z, =L,D,x, (15)

where z; and z, are the zero effort miss

distances for the attacker with respect to the
target and the defender with respect to the
attacker, respectively.

L=[10 0 0]
L=[1 0 0 0]

®, = L"|(sI- 4 )*‘T
®, =L (s~ 4, )‘I]T

3. Linear-Quadratic Differential Game
Guidance Law

Based on Section 2, considering the ZEM and
fuel consumption of the individual, the linear-
quadratic performance function can be
formulated as follows:

1
—51|zz|+552rr aldt

J(GA ,ar.ap) = |Z1 | 0

e[ aydr (16)

where ¢, ¢, &; &, is the game regulation

coefficient, which can adjust the conflict in
maneuvering strategies of the attacker A
when facing the target T and the defender D.
Considering the differential game scenario,
the implicit form of the differential game
guidance law can be derived:

arg min
a) = L)
a,,a;,a,
arg min
@, = V) 17
a,,a;,a,
arg max
)
a,,a,,a,

4. Simulations
Using the differential game guidance law
derived above, simulations of the T-A-D game
are conducted with the initial states and
parameters as shown in Table 1.

Table 1. Initial States of Target-Attacker-

Defender
Parameter T A D
Initial Position (km) [(0,0,0)|(10,8,10)|(-5,-8,-8)
Initial Velocity (m/s)| 500 | 1000 | 1000
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Initial Acceleration
(m/s?) 0 0 0
Simulation Time (s) | 25 25 25

Time Step (s) | 0.001] 0.001 | 0.001
Regulation .
Coefficient §=6=8=8=1

The spatial trajectories of the T-A-D game,
obtained from the initial states and parameters
set in Table 1, are shown in Figures 2-4. Here,
the vertical upward direction represents the
positive Y-axis, and the XYZ axes are
determined according to the right-hand rule
coordinate system. Figure 2 illustrates the X-Z
cross-sectional trajectory of the T-A-D three-
body game; Figure 3 shows the Y-Z cross-
sectional trajectory; and Figure 4 represents the
X-Y cross-sectional trajectory.

From the figures, it can be observed that the 3-
dimensional spatial T-A-D game model and
method based on the differential game guidance
law are effective and have certain reference
value for engineering practice and similar fields,

such as UAV confrontation.
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Figure 2. X-Z Cross-Sectional Trajectory of
the T-A-D Game
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the T-A-D Game
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Figure 4. X-Y Cross-Sectional Trajectory of
the T-A-D Game

5. Conclusion

This paper establishes a 3-dimensional relative
kinematic model for the T-A-D game scenario
and performs linearization and order reduction
of the mathematical model based on the zero
effort miss (ZEM) method, which simplifies the
subsequent derivation of the guidance law. An
optimized model of the linear-quadratic
differential game guidance law is presented
using the differential game method, and the
differential game guidance law is derived.
Simulation analysis based on this guidance law
indicates that the designed differential game
guidance law is effective and can be further
considered for application and improvement in
other fields.
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