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Abstract: This paper employs the ARMI-
TGARCH model to analyse Tesla stock data.
Firstly, the correlation of the data is
examined to validate the necessity of data
analysis. Subsequently, the ARIMA model is
utilized for parameter estimation and
analysis. The presence of heteroscedasticity
is preliminarily identified through an
analysis of residual sequences and their
squared values. The need for modelling
heteroscedasticity is confirmed via PQ and
LM tests. Finally, parameters are estimated
using the TGARCH(1,1) model, and the
validity of the model is verified through
interval estimation of the data. The
methodology employed in this paper
demonstrates scientific rigor and
effectiveness.
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1. Introduction
GARCH model, also knownas generalized
ARCH model, is an extension of ARCH model
developed by Bollerslev in 1986 [1]. GARCH
model can better capture the long-term
dependence and volatility changes of time
series data, and provide more flexible
parameters to describe the dynamic changes of
volatility.
Studying Tesla's stock is also important. First,
Tesla is a pioneer and leader in the electric
vehicle industry. Its performance and stock
movements can provide valuable insights into
the overall growth and potential of the electric
vehicle market.
Second, Tesla's business model is highly
innovative, including not only car
manufacturing, but also advances in battery
technology, autonomous driving and energy
storage. Studying its stock can assess the
market's perception and acceptance of these
cutting-edge technologies and their potential to
disrupt traditional automotive and energy

markets. In addition, Tesla's stock price is often
influenced by a variety of factors, and
analyzing these influences can give us a
broader understanding of the complex
dynamics affecting the company's financial
performance and stock valuation. Finally, as
Tesla moves forward, its stock performance
could have implications for the stock market as
a whole and the economy as a whole. The
insights gained from studying Tesla stock help
in strategic investment decisions, industry
analysis, and policy making.

2. GARCH Model for Data Analysis
The GARCH model can be expressed as:
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1 2 1( , , , )t tf x x x   means to fit the model of
data certainty information, mainly to obtain the
mean estimate of the series, such as using
regression model or ARIMA
model. ( ) 0tE a  and

0, 0k k    . (0,1)tz N , 2
t represents the

conditional variance of the time series at
time t . w is constant term,  and  are
coefficients of the GARCH model. 2

t i  is
square of the error term (residual), reflects the
influence of past residuals on current
conditional variance. 2

t j  represents the
influence of past volatility on current
conditional variance.
In empirical research, the GARCH(1,1) model
is most commonly used, and its expression is as
follows:

2 2 2
1 1,t t tw      (2)

In order to ensure the stationarity of the
GARCH process, the constraint of the model is:

1.   (3)
The limitation of GARCH model is that it
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cannot explain the negative correlation between
stock returns and return changes, that is,
conditional variance responds symmetrically to
positive price changes and negative price
changes. However, empirical studies have
found that the market does not respond
symmetrically to good news and bad news, and
people are more willing to accept good news
and more sensitive to bad news. At the same
time, in order to ensure that the GARCH model
is non-negative, all coefficients are assumed to
be greater than zero. These constraints imply
that any increase in the lag term will result in
conditional variance, thus excluding some
random fluctuation behavior, which may lead to
the oscillation phenomenon when estimating
the GARCH model.

3. TGARCHModel for Data Analysis
GARCH model has been widely studied, but
GARCH model does not consider the lever
effect, regardless of the previous sequence
values increase or decrease, which think about
the future at the same sequence swings.
However, in reality, many sequences, such as
stock volatility, have obvious leverage effects.
When asset prices rise or fall sharply, volatility
reacts differently, and when asset prices fall
sharply, volatility is generally larger.
TGARCH model is an extension of the
GARCH model, which captures the non-linear
changes of market volatility by introducing
threshold effect. Zakoian used a piece smart
linear function based on GARCH model to
describe the asymmetry of market volatility in
order to describe the impact of a negative shock
on the current volatility [2]. This nonlinear
feature enables the TGARCH model to
accurately describe the volatility changes in the
market, thus improving the effect of risk
management. At the same time, the TGARCH
model allows conditional variance to have
different responses to positive and negative
price changes, which is called asymmetric
effect, which can describe the different
reactions of the market to good and bad news.
According to the study of Glisten [3], the form
of TGARCH model is as follows:
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The first order form is as follows:

2 2 2 2
1 1 1 1,t t t t - tw d         (5)

Where 1 2 1( , , , )t tf x x x   represents the
modeling of the direction of the data,

(0,1)tz N , 2
t represents the conditional

variance of the time series at time t . w is
constant term,  and  are coefficients of the
TGARCH model. 2

t i  represents the square of
the error term (residual), reflects the influence
of the past residual on the current conditional
variance, 2

t j  represents the past conditional
variance, reflects the influence of the past
volatility on the current conditional variance.
Compared with the GARCH model, 2

1 1t - td 

is the TGARCH term, A threshold 1td  is set to
describe the impact of information, When

1 1td   is positive news impact, 1 0td   is
negative information impact.  is a parameter
that reflects the influence of positive and
negative information on market asymmetry.

4. Tesla Stock Analysis

4.1 Data Source and Description
Taking the closing price data of Tesla stocks as
the research object, the data is derived from
https://cn.investing.com/equities/tesla-motors-
historical-data. A total of 639 data span from
January 3, 2022 to July 18, 2024. We take the
time as the horizontal coordinate and the
closing price of the stock as the vertical
coordinate to get the time series diagram. We
can find that the price of the stock changes
greatly over time, with a maximum value of
$399.93 per share and a minimum value of
$108.1 per share. As can be seen from the
figure, the change of the closing price
fluctuates around 250, a large fluctuation is
often accompanied by another large fluctuation,
and a small fluctuation is also accompanied by
another small fluctuation, which conforms to
the characteristics of high frequency time series,
indicating that the data also has a volatility
aggregation effect.
QQ graph is used to test whether the data is
white noise. If the stock data is white noise,
there is no correlation between the data and
there is no need for further modeling. The QQ
graph from which it can be seen that more than
50% of the data is not on the straight line,
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indicating that the original data is not white
noise. Combining Shapiro-Wilk normality test,
we get the test statistic is 0.9822, and p-value is

75.212e , which indicates that there is a
correlation between stock closing price data.
According to the calculation of the stock
closing price, the skewness of the sequence
data is 0.3474, the peak is -0.2717, the Jarque-
Bera statistic is 14.736, and its corresponding p
value is 0.0006, indicating that the distribution
of the data is not normal, and the skewness is
significantly greater than 0. This shows that
there is a right rear tail phenomenon in the
series, and it can be seen that the distribution of
the series has obvious "peak and thick tail" and
asymmetric phenomenon, which accords with
the common characteristics of financial time
series.
The unit root test (ADF test) was further
conducted to judge the stationarity of the time
series, and the results were shown in Table 1.
As can be seen from the unit root test results in
Table 1, the ADF test statistic of the closing

price data is -1.0033, and the null hypothesis is
accepted at all three levels. Common methods
for processing stock data to make it become a
stable time series include difference and
logarithm. In this paper, d-order difference
method is adopted, and 1-order difference is
denoted as 1t tx x  .

Table 1. ADF Test.
t- statistic p-value

Value of test-statistic 1.0033 0.3161
Critical value at 1% -2.58
Critical value at 5% -1.95
Critical value at 10% -1.62

4.2 ARIMA model
Auto-regression moving average model
(ARMA model) is an important method to
study time series. It is a mixture of auto-
regression model (AR model) and moving
average model (MA model). The ARIMA
model is a modeling approach that utilizes the
ARMA model based on data differencing,
which can be expressed as flowing

1 1(1 )(1 ) (1 )p d q
p t q tB B B x B B               (6)

B is the backward operator,  is the mean of
the sequence. i and j are autoregressive
coefficient and moving average coefficient
respectively.

Table 2. Model Parameter Estimation
Results.

Variable Coefficient Std.Error
 -0.2504 0.4082

AR(1) 0.1923 0.1912
AR(2) 0.6084 0.1619

MA(1) -0.2130 0.1991
MA(2) -0.5486 0.1670

In order to determine the order and parameters
in the ARIMA(p,d,q) model, the fitted model is
determined according to the sum of squares of
the error and AIC criterion. The estimation
results of model parameters are shown in Table
2. The AIC value of the model is 4565.42, and
the log-likelihood function is -2276.71, The
expression we get for the model is:

2 2(1 0.1923 0.6084 )(1 ) 0.2504 (1 0.213 0.5486 )t tB B B x B B         (7)

4.3 Analysis of Variance
4.3.1Phillips-Perron (PP) test
Phillips-Perron test was used to verify the
stationarity of the time series [4]. The null
hypothesis of the test is that the sequence has a
unit root, that is, non-stationarity. The test
statistics of PP test are:
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where î is the OLS residual, k is the number
of covariates in the regression, q is the number

of Newey-West lags to use in calculating ̂ ,
and ˆ is the OLS standard error of ̂ .
The critical values, which have the same
distribution as the Dickey Fuller statistic, which
means that the heteroscedasticity series only
needs to be modified based on the original
statistic, ( )Z t not only take into account the
effects of autocorrelation errors, but also
continue to use the critical table of the statistic
for testing without fitting a new critical table.
Based on the fitting error acquired through
formula (7), we computed the pp-test value of
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the squared errors to be 0.01. Hence, we
contend that the variance signified by the sum

of squared errors is dissimilar, and further
modeling is requisite.

Figure 1. (a) Time Sequence Diagram of Residuals Squared, (b) ARCH Diagnostic Diagram.

Figure 2. (a) Autocorrelation Function Diagram of the Squared Residuals, (b) Partial
Autocorrelation Function Graph of Residual Squared.

4.3.2 ARCH test
By observing the residual plot of the
ARIMA(2,1,2) model, it can be found that the
residual is not completely stable near 0, which
can be better reflected by the residual square
plot, so heteroscedasticity is inferred.
The P-Q test shows that for all tests, the lag
order (4,8,12,16,20,24), the P-value is much
less than 0.05, which means that there is
enough evidence to accept the null hypothesis,
that is, the residual may have significant
autocorrelation; The LM test shows that the P-
value for any order of lag is much less than
0.05, indicating that at the significance level,
there is sufficient evidence to reject the null
hypothesis that the residuals are
heteroscedasticity. Although the P-value is
larger when the lag order is 4 and 8, it can be
considered that there is a certain degree of
heteroscedasticity. Therefore, using the
ARIMA model to fit a merge is not the most
appropriate.

4.4 TARCH Modeling
Since the low-order TGARCH model has a

better fitting effect, the TGARCH(1,1) model
may be considered.

, , (0,1)t t t t t tx a a z z N    
2 2 2 2

1 1 1 1t t t t - tw d        

(9)

The calculated parameters are estimated as
Table 3. Parameter Estimation of TGARCH.

Estimate Std.Error t-value P-value
 -0.105699 0.316555 -0.33391 0.738451
w 0.536288 0.486153 1.10313 0.269972
 0.032583 0.014584 2.23412 0.025475
 0.965218 0.015951 60.51170 0.00000
 -0.012214 0.014299 -0.85420 0.392997
The AIC value of this model is 7.0777, and the
BIC value is 7.1126, which is obviously lower
than the ARIMA (2,1,2) model fitted before, so
the TGARCH model is relatively better at this
time.
Nyblom test is used to check whether the model
parameters meet the stationarity condition. The
statistic 1.1576 of the joint test does not exceed
the critical value 1.88 of 1%, so the result is not
significant, and it can be considered that the
model parameters meet the stationarity
condition.
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Figure 3. (a)Interval Estimation, (b) Empirical Density Function Diagram 0f Residuals.
In the 99% confidence level curve of the model
3 (a), it can be found that most of the data are
within the 99% confidence interval except for a
few points. In the figure 3(b), the normalized
residual distribution is approximately normal,
and the thick tail phenomenon is not significant.

5. Conclusions
Through the analysis of Tesla stock data, we
give a modeling method of skewable
heteroscedasticity data, and this method
performs well in accuracy and interval
estimation. The model error is within the
acceptable range, and our model is valid..
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