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Abstract: As a highly maneuverable and
flexible unmanned aerial vehicle,
quadcopters have broad application
prospects in both civilian and military fields.
However, due to their complex dynamic
characteristics, nonlinearity, and strong
coupling, achieving stable and precise
control of quadcopters is a challenging task.
Traditional control methods often fail to
meet the control performance requirements
for such complex nonlinear systems. Neural
networks provide a new approach to solving
control problems in complex systems due to
their powerful learning and adaptive
capabilities. Neural networks can improve
the performance of control systems by
learning from large amounts of data,
capturing the dynamic characteristics of the
system, and adjusting control strategies
online. Combining neural networks with
PID control is expected to fully leverage the
advantages of both. Neural networks can
adjust the parameters of PID controllers in
real-time, enabling them to better adapt to
the complex dynamic changes and external
disturbances of quadcopter aircraft. This
fusion control method brings new
possibilities for improving the control
performance of quadcopter aircraft. This
study explores the application of neural
network PID in quadcopter aircraft to
achieve stable and precise control, laying
the foundation for its widespread promotion
in practical applications.
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1. Introduction
A quadcopter is an unmanned aerial vehicle
with four rotors. Its structure is simple, usually
consisting of four symmetrically distributed
rotors, fuselage, motors, electronic governors,
sensors, and controllers. Strong

maneuverability, capable of vertical takeoff
and landing, hovering, forward, backward, left,
right, and various complex flight movements.
It can be used in multiple fields such as aerial
photography, monitoring, rescue, agricultural
crop protection, logistics and distribution[1,2].

1.1 History
The development of quadcopters can be traced
back to 1907, when the Breguet brothers
designed and manufactured the first manned
quadcopter. However, this aircraft had a short
flight duration and relied entirely on human
physical control, resulting in poor performance
in all aspects.
After the 1990s, with the maturity of research
on microelectromechanical systems (MEMS),
several gram MEMS inertial navigation
systems were developed and applied,
providing the possibility for the production of
automatic controllers for multi rotor aircraft.
However, due to insufficient computing power
and high data noise in early calculators, the
application of miniature automatic controllers
was limited. It was not until around 2005 that a
truly stable automatic controller for multi rotor
unmanned aerial vehicles was produced.
The MD4-200 quadcopter system launched by
German company Microdrones GmbH in 2006
pioneered the application of electric
quadcopters in professional fields. Its
MD4-1000 quadcopter, launched in 2010, has
achieved success in the global professional
drone market.
In 2010, the French company Parrot released
the world's first popular quadcopter aircraft,
AR. Dragon. As a high-tech toy, it has the
advantages of being lightweight, flexible, safe,
and easy to control. It can also hover through
sensors and transmit camera images to mobile
phones using WIFI.
In February 2012, Professor V. Kumar from
the University of Pennsylvania showcased the
flexibility and formation collaboration
capabilities of quadcopters at the TED
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conference, demonstrating the inherent
potential of multi rotor technology.
In early 2012, China's DJI launched the
Phantom all-in-one machine, which, like AR.
Drone, is easy to control, beginner friendly,
and affordable for ordinary consumers.
Compared to the AR. Drone quadcopter
aircraft, the Phantom has certain wind
resistance, positioning function, and
load-bearing capacity, and can also carry small
cameras. At that time, using Gopro sports
cameras to shoot extreme sports became a
trend, so the Phantom drone quickly became
popular as soon as it was launched.
In March 2016, DJI launched the Phantom 4,
which features forward facing dual cameras
with obstacle perception capabilities and
real-time autonomous obstacle avoidance
through image recognition based visual
tracking. It is the world's first fourth
generation intelligent visual drone.
With the continuous advancement of
technology, quadcopters have been widely
used in various fields such as aerial
photography, monitoring, rescue, and
agricultural crop protection, and are still
constantly developing and innovating.

1.2 Working Principle
A quadcopter aircraft controls its attitude and
motion by adjusting the rotational speed of its
four rotors. The four rotors are divided into
two groups, with two rotors on the diagonal
rotating in the same direction and two adjacent
rotors rotating in opposite directions to
counteract the reverse torque[3].
When the four rotors have the same rotational
speed, the aircraft achieves vertical ascent or
descent; By changing the rotational speed of
different rotors, unbalanced lift is generated,
thereby achieving changes in attitude such as
pitch (forward/backward tilt), roll (left/right
tilt), and yaw (horizontal rotation). For
example, increasing the speed of the first two
rotors while decreasing the speed of the last
two rotors will cause the aircraft to tilt forward
and fly forward.
The stable flight of quadcopter aircraft relies
on various sensors (such as accelerometers,
gyroscopes, magnetometers, etc.) to perceive
attitude and position information, and
feedback this information to the controller. The
controller calculates appropriate control
instructions based on preset control algorithms,

adjusts the motor speed, and achieves stable
flight control.
The working principle of quadcopter aircraft is
based on aerodynamics and motor control. The
four rotors are distributed in a cross shape, and
the adjacent two rotors rotate in opposite
directions. In fact, various movements and
posture adjustments are mainly achieved
through the following methods[4]:
(1) Vertical motion: When the rotational speed
of the four rotors is the same and increases or
decreases, the total lift generated is greater or
less than the weight of the aircraft, thereby
achieving ascent or descent.
(2) Forward and backward motion: Increasing
the speed of the two rear rotors while
decreasing the speed of the two front rotors
will cause the aircraft to tilt forward,
generating a forward force component and
achieving forward flight; Otherwise, fly
backwards.
(3) Left and right movement: Increase the
speed of the left two rotors while decreasing
the speed of the right two rotors. The aircraft
will tilt to the right, generating a force to the
right and achieving rightward flight;
Otherwise, fly to the left.
(4) Yaw motion (horizontal rotation): When
the rotational speed of the two rotors on the
diagonal increases and the rotational speed of
the other two rotors on the diagonal ecreases, a
torque difference is generated, causing the
aircraft to rotate around the vertical axis and
achieve yaw motion.
In order to achieve stable flight, quadcopters
are usually equipped with various sensors such
as accelerometers, gyroscopes, magnetometers,
etc., to measure the attitude, angular velocity,
acceleration, and other information of the
aircraft. These sensors provide data feedback
to the flight controller, which adjusts the speed
of each motor in real time ccording to preset
algorithms and control strategies to maintain
the stable attitude of the aircraft and fly along
the predetermined trajectory.

2 Neural Network PID
The working principle of neural network PID
controller mainly includes the following
aspects:
Firstly, traditional PID controllers regulate
system deviations through three stages:
proportional, integral, and derivative. However,
its parameters are often difficult to accurately
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set when facing complex and ever-changing
systems.
Neural networks have powerful learning and
adaptive abilities. In the neural network PID
controller, the neural network part is
responsible for learning the dynamic
characteristics of the system and adjusting the
parameters of the PID controller (proportional
coefficient, integral coefficient, and
differential coefficient) based on the learning
results.
Specifically, neural networks use the system's
inputs (such as the deviation between set
values and actual output values) and outputs
(control variables) as training data. Through
continuous training, neural networks gradually
master the operating rules of the system.
In the control process, when there is a
deviation in the system, the neural network
calculates the appropriate PID parameter
adjustment based on the current deviation and
its learning of the system's past behavior. Then,
the adjusted PID parameters are used to
calculate the control variables and applied to
the controlled object to reduce deviations.
This process continues to loop, allowing PID
parameters to adapt to changes in the system in
real time, thereby achieving more accurate and
stable control effects.
In summary, the neural network PID controller
combines the learning ability of neural
networks with the basic framework of PID
control to improve the control performance of
complex systems【5-6】.

2.1 PID Control
PID control (Proportional Integral Derivative
Control) is a classic control strategy widely
used in industrial control and automation
fields.
Proportional (P) control: The output of the
controller is proportional to the input error
signal. When there is a deviation in the system,
proportional control will immediately generate
a control effect proportional to the deviation.
The larger the proportional coefficient, the
stronger the control effect, but an excessively
large proportional coefficient may lead to
system instability and overshoot.
Integral (I) control: The output of the
controller is proportional to the integral of the
input error signal. As long as there is an error
in the system, the integral control effect
continues to accumulate, causing the output to

continuously increase or decrease until the
error is zero, at which point the integral effect
will stop. The integral effect can eliminate the
steady-state error of the system, but excessive
integral effect will slow down the response
speed of the system and increase overshoot.
Differential (D) control: The output of the
controller is directly proportional to the
differential of the input error signal. At the
moment when the deviation signal changes,
differential control will have a significant
control effect, helping to accelerate the
response speed of the system, reduce
overshoot, overcome oscillation, and make the
system tend to be stable; But it has an
amplifying effect on noise interference, and
excessive differential control is detrimental to
the system's anti-interference ability.
In practical applications, by adjusting the
values of proportional coefficients, integral
coefficients, and differential coefficients (Kp,
Ki, Kd), the control system can achieve
desired performance indicators such as fast
response, small overshoot, and high
steady-state accuracy. The PID controller has a
simple structure, good stability, reliable
operation, and easy adjustment, and has
achieved good control effects in many
industrial process control and motion control
systems.
The control process of PID classical control
algorithm can be summarized as follows: 1.
Obtaining feedback signals of the controlled
object from the sensors of the rotary wing
aircraft; 2. Feed the error signal between the
expected value and the actual value into the
PID controller; 3. The classic PID controller
calculates the output signal of the control
based on the parameters of the proportional,
integral, and derivative stages; 4. Control the
output signal to enter the actuator of the
controlled object, completing the adjustment
of the controlled object. Thus, the goal of
continuously reducing the error between the
expected value and the actual value can be
achieved, ultimately making the control effect
of the system more accurate[7].
The basic principle is shown in Figure 1.

2.2 Neural Network PID Control
Neural Network PID is a control method that
combines neural networks with traditional PID
control. The traditional PID controller
achieves control of the system through a

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 2 No. 2, 2024 139

Copyright @ STEMM Institute Press http://www.stemmpress.com



combination of proportional, integral, and
derivative stages, but its parameter tuning
usually relies on experience or trial and error
methods, and its control effect may not be
ideal for complex nonlinear and time-varying
systems. Neural networks have characteristics
such as self-learning, adaptability, and

nonlinear mapping ability. Applying neural
networks to PID control can automatically
identify the parameters of the controlled
process and tune the PID control parameters in
real-time to adapt to changes in the controlled
process.

Figure 1. PID controller structure

Figure 2. Basic Structure of BPNeural Network
2.2.1The working principle of BP neural
network
Common methods for tuning PID parameters
based on neural networks include BP neural
networks, etc. Taking BP neural network
tuning PID parameters as an example, its
controller structure usually includes two parts:
the lower part is the classical PID control loop.
The upper part is a BP network. The input of
the network is control error, and the output is
proportional, integral, and derivative
parameters.
BP (Back Propagation) neural network is a
multi-layer feedforward network trained by
error backpropagation, and is currently one of
the most widely used neural network models.
The basic structure of BP neural network
includes input layer, hidden layer, and output
layer. The input layer neurons are responsible
for receiving external input information; The
hidden layer is responsible for processing and

transforming input information; The output
layer is responsible for outputting the
processing results. The learning process of BP
neural network consists of two processes:
forward propagation of signals and backward
propagation of errors. In the process of
forward propagation, input information is
processed layer by layer through the hidden
layer and transmitted to the output layer. If the
output layer does not receive the expected
output, it enters the backpropagation process.
In backpropagation, the output error is
propagated layer by layer through the hidden
layer to the input layer in some form, and the
error is shared among all neurons in each layer
to obtain the error signal of each neuron. This
error signal serves as the basis for correcting
the weights of each neuron. The process of
adjusting the weights of each layer in the
forward propagation of signals and the
backward propagation of errors is a repetitive
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process. The process of continuously adjusting
weights is the learning and training process of
the network. Training continues until the error
in the network output is reduced to an
acceptable level, or until a predetermined
number of learning iterations are reached，The
basic structure and workflow are shown in
Figure 2[8].
During the training process, the
backpropagation algorithm is used to derive
the learning rules (i.e. iterative formulas) for
each layer, continuously adjusting the weights
of the network to enable the controller to
automatically optimize PID parameters based
on the system's operating conditions.
Compared to traditional PID controllers,
neural network PID controllers have stronger
adaptability and robustness, and can better
handle control problems of complex systems
such as nonlinear and time-varying systems.
For example, in a PID control based on BP
neural network tuning proportional, integral,
and derivative, the input layer can be：

�(�) = �(�) − y(�) (1)
(Among them, �(� ) is the control input,
and�(�) is the system output)，The error at the
current moment; The input of the hidden layer
is：

����
1 � =

�=0

�
���

1 ��(�)� (2)

Among them，���
1 is the connection weight

from the input layer to the � -th hidden layer
node，��(�) is the �-th input of the input layer，
� is the number of input layer nodes。
The input of the output layer is:

����
2 � =

�=1

�
���

2 ��
1 (�)� (3)

Among them, ���
2 is the connection weight

from the hidden layer to the �-th output layer
node，�i

1 (�) is the output of the �-th hidden
layer node，� is the number of hidden layer
nodes.
By continuously adjusting the weights ���

1

and ���
2 , the system's output can track the

control input as closely as possible, thereby
achieving adaptive tuning of PID parameters.
In practical applications, it is necessary to
select appropriate neural network structures
and training algorithms based on specific
controlled objects and control requirements,

and conduct sufficient debugging and
optimization to achieve ideal control effects.
Meanwhile, the computational complexity of
neural network PID controllers is relatively
high, which may require certain computing
resources and time.
2.2.2 Selection of BP Neural Network
Architecture Framework
The BP neural network framework for
selecting optimal regions can play a certain
optimization role in the neural network
controller of rotary wing aircraft. When
selecting the structural framework of BP
neural network, several aspects should be
considered:
(1). Number of input layer nodes
The number of input layer nodes depends on
the feature dimension of the input data., The
input layer is set to 4 neurons, respectively
To specify the input �(�), actual input �(�),
error �(�), and constant factor 1 used to
stabilize the BP neural network.
(2) Number of hidden layers
Usually, you can try 1-2 hidden layers first.
(3) Number of hidden layer nodes
The number of hidden layer nodes is
determined using empirical methods, selecting
as few hidden layer nodes as possible to avoid
overfitting in the neural network.
(4) Number of output layer nodes
It depends on the task objectives. The output
layer is set to three neurons based on the three
parameters ��, ��, �� in the PID control
algorithm
(5) Activation function
The input layer generally does not use
activation functions. The commonly used
activation functions for hidden layers include
Sigmoid function, Tanh function, ReLU
function, etc. The Sigmoid function can
compress the output of neurons to a range of
0-1; The Tanh function compresses the output
between -1 and 1; The ReLU function is
computationally simple and helps alleviate
gradient vanishing problems in deeper
networks. The activation function of the output
layer depends on the task type, for example, in
binary classification problems, the output layer
can use the Sigmoid function; In multi
classification problems, the Softmax function
is commonly used; In regression problems,
activation functions are generally not used or
linear activation functions are used.
For the BP neural network controller in this
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article, Tanh function and Sigmoid function
are selected for the hidden layer and output
layer, respectively.
(6) Learning rate
The learning rate controls the update speed of
neural network weights. A slow learning rate
can lead to slow updates. Excessive learning
rate leads to unstable weight updates. Choose a
fixed learning rate of 0.2 here
2.3.3 The calculation process of BP neural
network algorithm
The calculation process of BP neural network
includes forward propagation stage and
backward propagation stage[9].
Positive propagation stage:
(1) The input layer accepts input data and
passes it to the hidden layer
(2) For each neuron in the hidden layer and
output layer, calculate its input weighted sum,
where is the weight connecting the neuron and
the neuron, and is the output of the neuron.
(3) Calculate the output of neurons using Tanh
function and Sigmoid function based on the
hidden layer and output layer, respectively
Backpropagation stage:
(1) Calculate the error of the output layer:
Calculate the error based on the actual output
and expected output.
(2) Backpropagate the error to the hidden layer
and calculate the error term for each neuron.
(3) Update weights based on the error term,
where is the learning rate and is the error
function
Application of Neural Network PID in
quadcopter Aircraft
The neural network PID controller has strong
adaptability and can automatically adapt to the
changes and uncertainties of the controlled
object. By using the learning ability of the
neural network, the PID parameters can be
adjusted in real time to achieve better control
effects. Capable of handling nonlinear systems,
with good control performance for complex
nonlinear systems, and able to effectively
handle nonlinear characteristics. Strong
anti-interference ability, with a certain degree
of suppression ability against noise and
interference in the system, improving the
stability and robustness of the system. High
optimization performance can achieve more
precise control, reduce overshoot, shorten
adjustment time, and improve the dynamic and
steady-state performance of the system.
Neural network PID has a wide range of

applications in quadcopter aircraft, mainly
reflected in its ability to accurately control the
pitch, roll, and yaw attitude of quadcopters,
ensuring stability in various environments and
working conditions; Position control can
achieve precise control of the horizontal
position (such as X and Y axis directions) and
vertical position (Z-axis direction) of the
aircraft, and can be used to complete tasks
such as fixed-point hovering and flying along
a predetermined trajectory; The improvement
of anti-interference ability is achieved by
adjusting control strategies in real time to
reduce the impact of interference on flight
stability and accuracy; Adapt to complex
environments and optimize control parameters
based on environmental characteristics when
flying in complex geographical environments
such as mountainous areas, urban canyons, etc;
Adaptation to load changes and collaborative
control.
In summary, neural network PID provides
strong support for the stable, precise, and
intelligent control of quadcopter aircraft,
promoting its widespread application and
development in many fields[10].

4. Conclusion
The application of neural network PID in
quadcopter aircraft is mainly aimed at solving
the time-varying and nonlinear problems of
quadcopter unmanned aerial vehicle systems,
in order to achieve more accurate attitude
control.
Compared to traditional PID control methods,
neural network PID controllers have some
significant advantages. For example, it has
stronger adaptability and anti-interference
ability. Through the learning ability of neural
networks, it can automatically adjust PID
parameters to adapt to the characteristic
changes of quadcopter aircraft under different
operating conditions, while having better
suppression effects on noise and interference
in the system.
In practical applications, researchers first need
to establish rigid body kinematic and dynamic
models of quadcopter drones. Based on these
models, use tools such as MATLAB Simulink
to build attitude simulation control models.
Then, the neural network PID control
algorithm is compared with other control
algorithms such as traditional PID and cascade
PID to evaluate its control effect on the three
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attitude angles (pitch angle, roll angle, yaw
angle) of the drone.
The experimental results show that the neural
network PID control algorithm performs better
in adjusting transition time and system static
error. For example, its adjustment transition
time is significantly shortened compared to
other algorithms, and the static error of the
system after stable output is also significantly
reduced. This means that this control algorithm
can achieve higher control accuracy while
having better static and dynamic
characteristics. For example, a study proposed
a drone attitude control algorithm based on
neural network PID, and the results showed
that the transition time of the algorithm was
reduced from 4 seconds to 1 second, and the
static error of the system after stable output
was only 0.5%.
However, neural network PID controllers also
have some limitations, such as high
computational complexity, requiring a large
amount of computing resources and time for
training and real-time parameter adjustment; It
has a certain demand for training data and
relies on sufficient training data to accurately
learn system characteristics; Its model
structure is relatively complex, which
increases the difficulty of design and
debugging; And compared to traditional PID
controllers, its working principle and
decision-making process are difficult to
explain and understand. However, overall, in
application scenarios such as quadcopters that
require high control accuracy and adaptability,
neural network PID controllers have important
application value and potential.
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