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Abstract: With the ongoing energy transition
and power system reform, Distributed Energy
Resources (DERs) are playing an increasingly
important role in modern power systems.
DERs mainly include distributed
photovoltaics, distributed wind power, small
hydropower, biomass energy, fuel cells, and
controllable loads, characterized by
decentralized deployment and local
consumption. The large-scale integration of
these resources presents new opportunities
and challenges for power systems. Effectively
coordinating and managing these distributed
energy resources has become a hot research
topic.
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1. Introduction
The Virtual Power Plant (VPP), as a new energy
management model, provides an effective
solution for the coordination and optimization of
distributed energy resources. VPP uses advanced
information and communication technologies
and control strategies to aggregate
geographically dispersed and diverse distributed
energy resources into a controllable and
schedulable whole, enabling participation in
power market transactions and system
operations. VPP can not only improve the
utilization efficiency of distributed energy
resources but also provide flexible regulation
capabilities for the power grid, enhancing
system reliability and stability[1].

2. Existing Optimization Scheduling Models
and Algorithms
For the optimization scheduling problem of VPP,
scholars have proposed various models and
algorithms. The main optimization objectives
include:
Economic optimization: minimizing operating

costs or maximizing economic benefits;
Environmental optimization: minimizing carbon
emissions or maximizing the utilization of
renewable energy;
Reliability optimization: maximizing system
stability or minimizing load shedding
probability;
Multi-objective optimization: comprehensively
considering multiple objectives such as
economic, environmental, and reliability.
In terms of modeling methods, commonly used
ones include deterministic models, stochastic
programming models, robust optimization
models, and fuzzy programming models. Among
them, stochastic programming and robust
optimization models can better handle the
uncertainty of DERs. In terms of solving
algorithms, they are mainly divided into exact
algorithms and heuristic algorithms. Exact
algorithms such as linear programming,
quadratic programming, and mixed-integer
programming are suitable for relatively simple
deterministic models; heuristic algorithms such
as genetic algorithms, particle swarm
optimization, and differential evolution
algorithms are more suitable for solving
complex nonlinear and non-convex optimization
problems. In recent years, optimization
algorithms based on artificial intelligence (such
as deep reinforcement learning) have also been
widely used in VPP scheduling, showing good
performance[2].

3. Virtual Power Plant Model for Distributed
Energy Resources Aggregation

3.1 Composition and Operation Mechanism
of Virtual Power Plants
A Virtual Power Plant (VPP) aggregates and
coordinates multiple Distributed Energy
Resources (DERs) through advanced
information and communication technologies,
making them functionally equivalent to a
conventional power plant[3]. The VPP
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comprises DERs, energy storage devices, loads,
information communication systems, and control
systems. The types of DERs are diverse, mainly
including solar energy, wind energy, biomass
energy, and small hydropower. These resources
transmit their generation capacity in real-time to
the control center via the information
communication system. Energy storage devices

store electrical energy during periods of low
demand and release it during peak demand to
balance supply and demand and improve energy
utilization efficiency. Load management uses
demand response technology to adjust loads,
reducing peak loads and achieving a dynamic
balance between supply and demand in the
power grid.

Figure 1. Overall System Layout
The operating mechanism of the VPP aims to
achieve efficient utilization of DERs and stable
operation of the power system through
intelligent means. First, the information
communication system monitors and transmits
real-time generation data, storage status, and
load conditions of various energy resources,
providing comprehensive decision-making basis
for the control system. Second, the control
system optimizes scheduling based on real-time
data and formulates the optimal dispatch plan.
This plan comprehensively considers the
characteristics of various energy resources, the
status of energy storage devices, and load
demands to achieve the goals of cost
minimization, benefit maximization, and stable
grid operation. In this way, the VPP not only
improves energy utilization efficiency and
economic benefits but also enhances the
flexibility and reliability of the power system,
contributing to the sustainable development of
energy strategies.

3.2 Mathematical Description of the Energy
Aggregation Model
To achieve the optimal scheduling of DERs, a
mathematical model comprising the objective
function and constraints needs to be constructed.
(1) Objective Function
Cost Minimization Objective Function:

Where Ci(Pi,t)is the generation cost of the ith

DER at time t, Sj(Ej,t)is the operating cost of the
j-th energy storage device at time t, and Dk(Lk,t)
is the demand response cost of the k-th load at
time t.
Benefit Maximization Objective Function:

Where Ri(Pi,t)is the generation revenue of the
ith DER at time t, and Gj(Ej,t)is the discharge
revenue of the j-th energy storage device at
time t.
(2) Constraints
Power Balance Constraint:

Where Pi,t is the generation power of the i-th
DER at time t, Ej,tdis and Ej,tch are the
discharge and charge power of the j-th energy
storage device at time t, respectively, and Lk,t
is the demand power of the k-th load at time t.
DER Output Constraint:

Where Pimax is the maximum output of the
i-th DER.
Energy Storage Device Operation Constraint:

Where Ejmin and Ejmax are the
minimum and maximum storage capacities of
the jth energy storage device, respectively.
Load Demand Response Constraint:

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 2 No. 2, 2024 123

Copyright @ STEMM Institute Press http://www.stemmpress.com



Where Lkmin and Lkmax are the minimum and
maximum demand powers of the kth load,
respectively.
The VPP optimization scheduling model for
DERs aggregation is constructed through the
above objective functions and constraints. This
model comprehensively considers the generation
cost and revenue of DERs, the operating cost
and revenue of energy storage devices, the
demand response cost of loads, and the power
balance of the system, aiming to achieve cost
minimization and benefit maximization.
Meanwhile, the model also takes into account
various constraints such as DER output, energy
storage device operation, and load demand
response, ensuring the feasibility and
effectiveness of the optimization scheduling
scheme[4].
In summary, the VPP optimization scheduling
model for DERs aggregation effectively
integrates and coordinates multiple DERs
through information communication and control
technologies, achieving efficient energy
utilization and stable operation of the power
system. The construction of the mathematical
model and the design of the optimization
scheduling algorithm can provide theoretical and
technical support for realizing sustainable
energy strategies.

4. Optimization Scheduling Model of Virtual
Power Plants

4.1 Determination of Scheduling Objectives
The optimization scheduling objectives of a
Virtual Power Plant (VPP) typically include cost
minimization and benefit maximization. Cost
minimization aims to reduce the operating costs
of Distributed Energy Resources (DERs), the
charging and discharging costs of energy storage

devices, and the costs of load regulation.
The objective function can be expressed as:

where Ci(Pi,t) is the generation cost of the i-th
DER at time t, Sj(Ej,t) is the operating cost of
the j-th energy storage device at time t, and
Dk(Lk,t) is the demand response cost of the k-th
load at time t.
Benefit maximization mainly focuses on the
following aspects: first, the generation revenue
of DERs, including electricity sales revenue and
policy subsidies, which is one of the important
income sources for DERs and directly affects
their economic feasibility. Second, the discharge
revenue of energy storage devices, which
achieves profit maximization by discharging
during peak demand periods to obtain higher
electricity prices. This strategy not only
optimizes the utilization rate of energy storage
devices but also enhances overall economic
benefits. Lastly, demand response revenue is
obtained by adjusting loads for compensation.
The demand response mechanism allows users
to adjust their electricity consumption based on
grid demand, thus reducing load during peak
periods and obtaining corresponding economic
compensation. The optimization and integration
of these revenues help to enhance the overall
benefits of the VPP, increasing its
competitiveness and sustainability in the market.
The objective function can be expressed as:

4.2 Construction of Multi-Time-Scale
Scheduling Models
The optimization scheduling of a VPP needs to
consider scheduling problems on different time
scales, including short-term, medium-term, and
long-term scheduling. The scheduling objectives
and constraints differ for each time scale.

Figure 2. Multi-Time-Scale Optimization Scheduling Model of Virtual Power Plants
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(1) Short-Term Scheduling Model
Short-term scheduling usually refers to
minute-level to hour-level scheduling decisions.
The main goal is to balance supply and demand
in real-time to ensure the stable operation of the
grid. The short-term scheduling model can be
expressed as:

Subject to:
Power balance constraint:

DER output constraint:

Energy storage device operation constraint:

Load demand response constraint:

(2) Medium-Term Scheduling Model
Medium-term scheduling usually refers to
day-level to week-level scheduling decisions.
The main goal is to optimize the allocation of
energy resources to maximize economic benefits.
The medium-term scheduling model can be
expressed as:

Constraints are similar to those in short-term
scheduling but need to consider power balance
and energy storage management over a longer
time scale.
(3) Long-Term Scheduling Model
Long-term scheduling usually refers to
month-level to year-level scheduling decisions.
The main goal is to formulate development plans
for energy resources to enhance the
sustainability and flexibility of the energy
system. The long-term scheduling model needs
to comprehensively consider the construction
planning of DERs, the configuration strategy of
energy storage devices, and the load growth
forecast. The long-term scheduling model can be
expressed as:

Constraints need to consider long-term resource
planning and development strategies, as well as

the impact of policy and market changes on
scheduling.
By constructing multi-time-scale scheduling
models, the optimal scheduling of DERs can be
achieved on different time scales, improving the
operational efficiency and economic benefits of
the VPP, and ensuring the stable and reliable
operation of the power system. In summary, the
construction and optimization of the VPP
scheduling model is an important approach to
achieving efficient utilization of DERs. By
comprehensively considering cost minimization,
benefit maximization, and uncertainty factors,
and constructing multi-time-scale scheduling
models, strong support can be provided for the
stable operation and sustainable development of
the power system.

5. Design of Optimization Scheduling
Algorithms

5.1 Algorithm Process Design
This study selects Genetic Algorithm (GA) and
Deep Reinforcement Learning (DRL) as
representative optimization scheduling
algorithms, and designs their respective
processes.

Figure 3. Optimization Scheduling Algorithm
Process Design

The Genetic Algorithm (GA) is an optimization
algorithm that simulates natural selection and
genetic mechanisms, suitable for solving
complex combinatorial optimization problems.
Its basic process includes the following steps: In
the population initialization phase, a certain
number of individuals are randomly generated,
each representing a possible scheduling solution.
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Then, the fitness value of each individual is
calculated based on a predetermined objective
function, reflecting the quality of the individual
scheduling solution. The selection operation is
based on the fitness values, with individuals
having higher fitness values being more likely to
be selected, simulating the natural selection
process. New individuals are generated through
crossover operations, simulating gene
recombination, thereby increasing population
diversity and preventing premature convergence
to local optima. Mutation operations generate
new individuals by randomly changing some

gene positions of the individuals, maintaining
population diversity and further avoiding
premature convergence. Finally, by updating the
population, newly generated individuals are
added to the population, and individuals with
low fitness values are eliminated, maintaining
the scale and quality of the population. By
iterating these steps, the optimal solution is
gradually approached until the preset
termination conditions are met, such as reaching
the maximum number of iterations or the fitness
value no longer significantly improving.

Figure 4. Load Balancing Scheduling Strategy Based on Genetic Algorithm
Deep Reinforcement Learning (DRL) combines
deep learning and reinforcement learning
techniques, suitable for handling complex
dynamic optimization problems. Its process
includes environment interaction, state update,
policy optimization, and experience replay. The
agent selects an action in the current state and

interacts with the environment, which returns the
corresponding reward and the next state based
on the action. Based on the reward and new state
feedback from the environment, the agent
updates its internal state information,
accumulates experience, and gradually learns the
dynamic characteristics of the environment.

Figure 5. Feature Extraction Using Deep Neural Network (DNN)
The agent’s policy is updated using a Deep
Neural Network (DNN), with the objective of
maximizing long-term cumulative rewards,
thereby ensuring that the agent achieves
maximum gains in future decisions.

5.2 Detailed Explanation of Key
The optimization process of the Genetic
Algorithm (GA) includes multiple key steps,
each of which has a significant impact on the
quality of the final solution and the convergence
speed. Deep Reinforcement Learning (DRL)
combines the techniques of deep learning and
reinforcement learning, suitable for complex

dynamic optimization problems[5]. Its key steps
include environment interaction, state update,
policy optimization, and experience replay. The
agent selects an action in the current state,
interacts with the environment, and receives
feedback in the form of rewards and the next
state. The agent's experience samples, which
include state, action, reward, and next state
tuples, are stored and replayed. Experience
replay helps to break the correlation between
samples, improving learning efficiency and
stability, and preventing the agent from
overfitting to specific experiences. By
repeatedly sampling from the experience replay
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pool for learning, the agent gradually improves
the robustness and adaptability of its policy.
These steps collectively form the optimization
process of the DRL algorithm, enabling the
agent to continuously learn and optimize
scheduling strategies in complex dynamic
environments, thereby achieving optimal
performance.

Figure 6. Key Steps of the Optimization
Scheduling Algorithm
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