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Abstract: To solve the problem of low
accuracy in fault diagnosis of oil immersed
transformers, a transformer fault diagnosis
method based on improved bald eagle
search algorithm optimized least squares
support vector machine is proposed. Aiming
at the problem of difficulty in selecting the
optimal values of the penalty factor γ and
kernel function parameter σ based on
manual experience and low fault diagnosis
accuracy in least squares support vector
machines, an improved Bald Eagle Search
(IBES) algorithm is proposed to optimize its
parameters. The results indicate that the
proposed method has the characteristics of
high diagnostic accuracy, simple model, and
strong generalization ability.
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1. Introduction
Transformers are key equipment for ensuring
the safe transmission of electrical energy in
power systems. With the continuous expansion
of voltage levels and power grid scale, the
number of transformer applications is
increasing, resulting in a geometric increase in
the probability of transformer failures, which
seriously threatens the normal operation of the
power system. Therefore, efficient and
accurate diagnosis of transformer faults is of
great significance for ensuring the safety of the
power system.
At present, partial discharge detection
technology and Dissolved Gas Analysis (DGA)
technology have been widely used as
preventive monitoring technologies for power
equipment in transformer fault monitoring and
diagnosis. With the continuous development of

AI technology, most transformer fault
diagnosis is improved by combining DGA
with intelligent diagnosis. Common intelligent
diagnosis methods include neural networks,
artificial bee colony algorithm, support vector
machine, etc. Neural network methods have
disadvantages such as relatively complex
systems, slow convergence speed, and
overfitting [1-4]. The artificial bee colony
algorithm effectively improves the diagnostic
accuracy by optimizing the kernel parameters
of the kernel principal component analysis
method. However, the ABC local search
ability is weak, which can easily lead to low
search efficiency [5]. Compared with neural
networks and ABC algorithms, support vector
machines can better handle local minima and
have strong learning generalization ability.
However, the kernel parameters and penalty
factors limit the classification performance of
SVM, and improper values can cause
significant errors in diagnostic results [6-8].
Bald Eagle Search (BES) is a new type of
swarm intelligence metaheuristic optimization
algorithm with strong global search ability and
fast convergence speed. It has shown good
performance in many optimization problems,
but still has the drawbacks of easily falling into
local optima and low convergence accuracy [9-

13].
This paper proposes an IBES optimized
LSSVM method for transformer fault
diagnosis. By introducing tent chaotic mapping,
adaptive t-distribution, and dynamic selection
to improve and optimize BES. Firstly, the first
generation population is uniformly distributed
in the search space through tent chaotic
mapping initialization, and the bald eagle
position update random number r is
optimized using tent chaotic mapping to
enhance the global search capability in the
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initial stage of the algorithm. Secondly, an
adaptive t-distribution and dynamic selection
strategy are adopted to balance the proportion
of global and local search, in order to enhance
the algorithm's global search and local
development capabilities and accelerate the
convergence speed of the algorithm. Using
IBES to optimize the penalty factor  and
kernel function parameter  of LSSVM, and
applying the IBES-LSSVM model to
transformer fault diagnosis. The feasibility and
reliability of the proposed IBES-LSSVM
transformer fault diagnosis model were
verified through comparative experiments with
FA-LSSVM and CS-LSSVM models.

2. Bald Eagle Search Algorithm
BES is a novel heuristic algorithm with strong
global search capability [14]. BES simulated
three stages of bald eagle hunting fish behavior,
namely randomly selecting a search space,
then searching for spatial prey, and finally
diving to capture prey. The main process of the
algorithm is as follows.
1) Randomly select the search space and
update the optimal search position based on the
number of prey. The position update formula is
as follows:

)(, imeanbestnewi PParPP  (1)
Where, newiP , and new represent the updated

position of the i-th bald eagle, bestP is the
current optimal search position, a is the
position change control parameter with a value
range of (1.5,2), r is a random number within
(0,1), and meanP is the average distribution
position, iP is the position of the i-th bald
eagle before the update.
2) Within the selected search space, spiral
flight and search for the optimal diving capture
position for prey. The update formula for spiral
flight position is as follows:
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Where, )(i and )(i are the polar angle and
polar diameter of the spiral flight equation,
respectively.  and R are the control

parameters for the spiral trajectory, with 
ranging from (0,5) and R ranging from (0.5,2).

)(ix and )(iy are the polar coordinates of the
bald eagle, both ranging from (-1,1). The
update formula for the optimal diving capture
position is as follows:
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Where, 1iP represents the next updated
position of the i-th bald eagle.
3) Quickly dive from the optimal capture
position towards the target prey, while other
individuals in the population simultaneously
move towards the optimal position and launch
an attack. The equation of motion state for this
stage is as follows:

))(sinh()(max
))(sinh()()(1 ii
iiix



 (7)

))(cosh()(max
))(cosh()()(1 ii
iiiy



 (8)

The position update formula for the subduction
process is as follows:
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Where, 1c and 2c represent the intensity of the
bald eagle's movement towards the center
position, with values ranging from (1, 2).
In the first stage of BES, the randomness of the
initial position of bald eagles may lead to
uneven distribution of their individual
positions, thereby reducing population
diversity and optimization speed. Therefore,
this article proposes an improved bald eagle
search optimization algorithm.

3. IBES

3.1 Tent Chaotic Mapping
Considering the significant advantages of tent
chaotic mapping in terms of traversal,
uniformity, regularity, and iteration speed, the
tent chaotic mapping is first used to improve
the initialization process of the bald eagle
population. The expression for tent chaotic
mapping is:
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Where, i
kx 1 and i

kx are chaotic sequences,
Ni ,,2,1  is the population size, and
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dk ,,2,1  is the spatial dimension. By
selecting d initial values and following
equation (10), d chaotic sequences can be
obtained. Then, i

kx is inverse mapped to the
search space to obtain the initialized
population.

i
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i
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Where, uib and ib1 are the upper and lower

bounds of i
kx search, respectively. Then, the

tent chaotic mapping is used to improve the
position update equation (1) to reduce the
impact of random number r on the global
search ability of bald eagles. The updated
position formula after improvement is as
follows:
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i
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3.2 Adaptive T-distribution and Ynamic
Selection Strategy
The probability density function of the
adaptive t-distribution is as follows:
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When the degree of freedom parameter 1n ,
it satisfies )1,0()1( Cnt  and follows a
Cauchy distribution. As n increases, it tends
to follow a normal distribution. When n ,

)1,0()( Nnt  is an approximate
Gaussian distribution. The adaptive t-
distribution and its mutation operator  are
used to mutate the optimal diving capture
position of the second stage bald eagle, in
order to improve the global search ability of
the algorithm. Taking n as the number of
iterations T , the value of T is relatively large
in the later stage of iteration, and )(Tt is
approximately a Gaussian distribution
mutation. At this time, the effect of the
mutation term is reduced, which is beneficial
for the algorithm to perform local search and
can improve the convergence speed of the
algorithm. But if all individuals introduce the
mutation operator  during each iteration, it
will inevitably increase the algorithm's
computation time, so dynamic selection
probability  is used for adjustment.

maxmax21 /) TTT  （ (14)
Where, maxT is the maximum number of
iterations, 1 is the upper limit of dynamic
selection probability, 5.01  , 2 is the
magnitude of change in dynamic selection
probability, 1.02  . The improved position
update formula is as follows:
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Where, '
,newiP is the position of the i-th bald

eagle individual after mutation, newiP , is the
position of the i-th bald eagle individual before
mutation,  is the mutation operator, and

)1/1 max  TT（ , ]1,0[ . As the
number of iterations T increases,  gradually
decreases, and the control of mutation intensity
becomes weaker.

4. Least Squares Support Vector Machine
Least Squares Support Vector Machine
(LSSVM) is an improved Support Vector
Machine (SVM) based on statistical theory.
Compared with traditional SVM, LSSVM with
kernel function has the advantages of fast
computation speed and low computational
complexity when processing large-scale data.
In this paper, LSSVM is selected for fault type
classification [15-17]. LSSVM principle: In the
total number of data n and training data

niyx ii ,,2,1),,(  , ix and iy represent the
input vector and output data. A nonlinear
function is used to map the input space to the
feature space. At this time, the classification
function is follows:

bxxf  )()(  (16)
Where,  represents the weight vector, and b
represents the deviation. For LSSVM, the
optimization problem can be transformed into
the following equation.
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Where, i and  are the error term and
penalty factor, respectively. Introduce
Lagrange function to solve optimization
problems.
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ia is a Lagrange multiplier, and according to
the KKT condition, the partial derivative of

ab ,,,  is calculated.
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Simplify equation (20) by eliminating  and
 , and obtain the following formula.
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ijiji xxYY  . According to
Mercer's condition, the kernel function and
mapping function have the following
relationship.
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The radial basis function (RBF) is chosen as
the kernel function here.
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Where,  is the kernel function. By
substituting the results of the above two
equations into bxxf  )()(  , the
classification function is obtained as follows:

0),()(  bxxKYaxf jiii (24)
However, the key parameters  and  of this
method have a significant impact on the fault
diagnosis results. Therefore, this paper adopts
the proposed IBES method to optimize the two
key parameters. The main process is as follows:
Step 1: Extract data and divide it into a training
set and a testing set.
Step 2: Set the population size of bald eagles,
the optimization range of key parameters 
and  , the maximum number of iterations, the
objective function dimension, and the initial
value boundary conditions, and initialize the
population using chaotic mapping according to
equation (11).
Step 3: Update the values of parameters  and
 , calculate the fitness of bald eagle
individuals, and rank their fitness values to

determine the current optimal fitness and
corresponding position.
Step 4: Optimize the random number r using
tent chaotic mapping and update the position
of the bald eagle according to equation (12).
Step 5: If r , update the spiral movement
position of the bald eagle according to
equation (6); If r＜ , introduce the adaptive
t-distribution and its mutation operator  , and
update the position of the bald eagle spiral
movement according to equations (6) and (15).
Step 6: Determine if the maximum number of
iterations has been reached. If not, return to the
Step 3 loop; If achieved, output the optimal
parameters  and  , and obtain the optimal
IBES-LSSVM model.
Step 7: Apply the optimal IBES-LSSVM
model to diagnose and classify transformer
faults.

5. Experimental Verification
According to references [18-20], 422 sets of
transformer fault data were selected, and Table
1 shows the specific distribution of data
samples:
In Table 1, there are 295 training sets and 127
testing sets, with six types of faults: medium
low temperature overheating fault, high
temperature overheating fault, partial discharge
fault, low-energy discharge fault, high-energy
discharge fault, and normal state. These faults
are sorted by encoding from 1 to 6.
422 sets of data were used for fault diagnosis
using the IBES optimized LSSVM method
proposed in this paper, and the experimental
results are shown in Figure 1.
The diagnostic accuracy of the IBES optimized
LSSVM diagnostic model in Figure 1 is
94.49%. The proposed diagnostic method is
more sensitive to medium and low temperature
overheating, normal state, and partial discharge
faults, and has a relatively low diagnostic
effect on high temperature overheating.
However, the comprehensive diagnostic
accuracy is above 94%. To verify the
effectiveness of the method proposed in this
paper, it was compared with the FA-LSSVM
method and CS-LSSVM method, and the
results are shown in Figure 2 and Figure 3,
respectively.
From Figures 2 and 3, it can be seen that the
accuracy of the FA optimized LSSVM
diagnostic model is 81.1%, while the
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comprehensive accuracy of the CS optimized
LSSVM method is 88.98%, which is
significantly lower than the method proposed
in this paper, verifying the effectiveness of the
proposed method.

Table 1. Data Sample Distribution

Type Sample
size

Training
set

Test
set

1 Normal 67 47 20
2 partial discharge 69 48 21
3 Low energy discharge 72 50 22
4 High-energy discharge 71 50 21
5 Medium low temperature

overheating 72 50 22

6 High temperature
overheating 71 50 21

Figure 1. Fault Diagnosis Results of IBES
Optimized LSSVMMethod

Figure 2. Fault Diagnosis Results of FA
Optimized LSSVMMethod

Figure 3. Fault Diagnosis Results of CS
Optimized LSSVMMethod

6. Conclusion
To solve the problem of low accuracy in
transformer fault diagnosis, a transformer fault
diagnosis method based on IBES optimized
LSSVM is proposed. By introducing tent
chaotic mapping and adaptive t-distribution to
improve BES, the algorithm's optimization
ability is enhanced. Using IBES to optimize
LSSVM parameters, the generalization ability
and classification accuracy of LSSVM are
improved. And the proposed IBES-LSSVM
method was compared with FA-LSSVM and
CS-LSSVM to verify its effectiveness.
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