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Abstract: This paper proposes a heartbeat
detection signal-processing algorithm based
on the laser speckle vibration measurement
principle, specifically designed for life-sign
detection in post-disaster rescue operations.
Laser speckle vibration measurement is a
non-contact measurement technique that
extracts vibration information of a target by
illuminating its surface with a laser beam
and detecting changes in the speckle pattern
caused by minute surface vibrations. In this
study, we use the laser speckle vibration
measurement principle to acquire heartbeat
signals from trapped individuals. To
enhance detection accuracy and noise
resistance, we have designed a series of
signal processing steps, including signal
preprocessing, noise filtering, multi-scale
analysis, and precise extraction and
identification of heartbeat frequency.
Experimental results show that this
algorithm effectively extracts weak
heartbeat signals in complex post-disaster
environments, demonstrating excelent
robustness and high-precision detection
performance. This technology provides a
reliable and practical solution for life
detection in post-disaster search and rescue
operations.
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1. Introduction
In post-disaster rescue, quickly and
accurately identifying survivors' vital signs
is crucial for improving rescue efficiency.

Traditional vital sign detection methods,
such as acoustic detection and thermal
imaging, while effective in some cases, are
often affected by noise, obstacles, and other
factors in complex post-disaster
environments, reducing their accuracy and
effectiveness. Recently, non-contact
measurement methods based on laser
technology have gained significant attention,
with laser speckle vibration measurement
technology showing great potential in vital
sign detection due to its high sensitivity to
small vibrations.
The use of lasers for vibration measurement
has been a long-standing area of interest.
Optical vibrometers can achieve sub-
wavelength mechanical vibration
measurements without contacting the
object[1]. Laser speckle vibration
measurement is a technique that detects
small vibrations by analyzing changes in the
speckle pattern produced when a laser beam
illuminates an object's surface. Since the
small movements of the chest caused by the
heartbeat are reflected in subtle changes in
the speckle pattern, laser speckle vibration
technology can be used to acquire heartbeat
signals. However, the complex background
noise and interference in post-disaster
environments pose significant challenges to
accurate signal extraction.
To address this challenge, this paper
proposes a heartbeat detection signal
processing algorithm based on the laser
speckle vibration measurement principle.
The algorithm is designed with multiple
steps, including signal preprocessing, noise
filtering, and multi-scale analysis, to
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enhance the accuracy and robustness of
heartbeat detection in complex
environments. Experimental validation
shows that the algorithm effectively extracts
weak heartbeat signals, demonstrating
excellent detection performance.
This research provides a new technical
approach for life detection in post-disaster
rescue operations, with significant practical
application value. Future research will
focus on further optimizing the algorithm to
handle more extreme environmental
conditions and applying this technology to
actual post-disaster rescue missions.

2. Principle Introduction

2.1 Origin of Speckle
Speckle is a complex pattern that results
from the scattering of electromagnetic
waves or particle beams by a rough surface.
When a laser is directed at a rough surface,
each small surface element acts as a
diffraction unit, with the surface resembling
a "phase grating" composed of many
diffraction components[2]. The random
arrangement of these surface elements leads
to interference of the scattered light,
creating an irregular speckle pattern. In
optical systems, the width of the point
spread function affects image quality,
causing the light rays from the surface
elements to overlap during imaging, thereby
producing the speckle phenomenon[3], as
shown in Figure 1.

Figure 1. Laser Speckle Pattern
Speckle metrology includes various
methods, primarily speckle interferometry,
speckle photography, partial coherence
speckle interferometry, and white light
speckle methods. Among these, speckle
interferometry and speckle photography are
the most widely used[4]. In 1970, Leendertz
introduced the speckle interferometry

method[5], This method involves splitting
the laser scattered back from the object's
surface and analyzing the resulting
interference fringes. There are four types of
speckle interferometry: reference beam type,
double beam type, double aperture type, and
shear type. Speckle photography, on the
other hand, involves directly imaging the
scattered light with photographic equipment
and analyzing the original speckle images
frame by frame to obtain information about
surface shape changes. This approach was
first explored by Burch in 1968[6]. With
advancements in technology, traditional
film and plate recording methods have
shown limitations, particularly in terms of
time consumption and inability to meet real-
time requirements[7]. The development of
electronic and computer technologies has
led to the application of optoelectronic
imaging devices in speckle metrology,
driving the emergence of Electronic Speckle
Pattern Interferometry (ESPI) and digital
speckle correlation techniques[8]. This
paper will briefly describe the principles
and characteristics of these two
technologies and analyze typical optical
systems.

2.2 Speckle Vibration Calculation
In 2009, Israeli researcher Zalevsky[9] and
colleagues utilized high-speed area cameras
to record laser speckle and extract subtle
vibrations through inter-frame speckle
matching, marking one of the earliest
reports on using high-speed imaging for
weak vibration detection, as illustrated in
Figure 2. In laser speckle measurement, the
rough surface of the object causes laser
scattering, creating a speckle image. If the
object's tilt angle is α, the displacement δ of
the speckle image can be expressed as δ =
Z2tanα, where Z2 is the distance from the
object to the observation plane. According
to geometric optics, the speckle
displacement Δx on the imaging sensor can
be calculated by Δx = (f/Z3) * δ, where Z3
is the distance between the observation
plane and the imaging system's principal
plane, and f is the lens focal length.
Combining these formulas, the final relation
is Δx = (Z2/Z3)*ftan α, showing the
relationship between speckle displacement
and the object's tilt angle[10].
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Figure 2. Schematic Diagram of Laser

3. System Implementation
The system structure proposed in this paper
is illustrated in Figure 3. A spatially
coherent laser beam is directed at the rough
surface of a vibrating object[11], creating
objective speckle patterns upon reflection.
These patterns generally follow a Gaussian
distribution. During detection, vibrations on
the object's surface cause movement in the
speckle pattern, leading to variations in
light intensity and enabling the
measurement of vibrations[12]. When a
body is buried, its heartbeat vibrations are
transmitted through the covering material to
the surface. Laser speckle vibrometry can
then detect these vital signs.
Lens 1 collects speckle energy, the aperture
controls the speckle size, Lens 2 is used for
collimation, and the mask plate controls the
light aperture, ensuring the speckle size
reaching the APD (Avalanche Photodiode)
is smaller than its detection area, and helps
find the optimal detection position. An
ADC (Analog-to-Digital Converter) is used
for analog-to-digital conversion to measure
the speckle vibrations. The power P(t)
detected by the photodiode in the system
can be represented by a truncated Taylor
expansion:
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Figure 3. Schematic Diagram of a
Heartbeat Detection System

4. Algorithm Processing

4.1 Algorithm Processing Scheme
Detecting vital signs is challenging due to the

weak heartbeat signals, which are further
attenuated after transmission through covering
materials. Extracting coherent heartbeat
information from noise is therefore a key
difficulty in this system. The data processing
approach first employs low-pass filtering to
remove high-frequency noise, followed by
normalizeation enhancement. Moving average
filtering is then used for coherent heartbeat
detection. The flowchart for this process is
shown in Figure 4.

Figure 4. Algorithm Processing Flow
In this study, we employed advanced methods
based on laser speckle vibrometry to detect and
analyze vital signs beneath buried materials in
post-disaster scenarios. The following is a
detailed description of the data processing
workflow we used:
Signal Acquisition: Signal acquisition was
performed using laser speckle technology
combined with a high-sensitivity Avalanche
Photodiode (APD) detector[13]. This method
effectively captures weak vital signs signals,
such as periodic vibrations caused by heartbeat,
by monitoring changes in the laser speckle
pattern induced by the minute vibrations of the
living body.
Low-pass Filtering: A low-pass filter was
applied to the raw signal to remove frequency
components above 400Hz. The cutoff
frequency of the low-pass filter was set at
400Hz to eliminate high-frequency noise and
irrelevant interference, while retaining the
primary frequency components of the heartbeat
signal. This step is crucial for extracting low-
frequency physiological signals, as heartbeat
signals typically fall within this frequency
range[14].
Normalization Enhancement: The signal, after
low-pass filtering, was normalized to
standardize its amplitude range. This process
maps the signal amplitude to a uniform
standard range (e.g., [0, 1]), eliminating
differences in signal amplitude, enhancing the
signal features, and providing stable input data
for subsequent processing steps[15].
Moving Average Filtering: A moving average
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filter was used to smooth the normalized signal.
By applying a sliding window average, moving
average filtering effectively reduces the impact
of random noise, improving the smoothness
and stability of the signal. The window size
was chosen based on the signal characteristics
and noise level to optimize the smoothing
effect[16].
Heartbeat Coherence Detection: Finally,
heartbeat coherence detection was performed
to analyze the processed signal. Specifically,
we used a combination of Autocorrelation
Function (ACF) and Power Spectral Density
(PSD) analysis. The autocorrelation function
identifies periodic features in the signal by
calculating the correlation of the signal with
itself at different time delays, revealing
periodic patterns. Power spectral density
analysis quantifies the energy distribution of
the signal across different frequencies, further
confirming the presence and frequency
characteristics of the heartbeat signal[17]. By
integrating these techniques, we effectively
extracted the periodic components of the
heartbeat and distinguished the vital signs from
background noise[18].

4.2 Algorithm Processing Results
In analyzing the algorithm processing results,
we followed a series of steps to ensure
accurate extraction of heartbeat signals from
complex environments. Initially, during the
signal acquisition phase, a high-sensitivity
Avalanche Photodiode (APD) detector
combined with laser speckle technology
successfully captured weak heartbeat signals.
The raw signal was then processed using a
low-pass filter to remove frequency
components above 1000Hz. This step was
crucial for eliminating high-frequency noise
and irrelevant interference, as heartbeat signals
typically fall within a lower frequency range.
The low-pass filter's cutoff frequency was set
at 1000Hz, preserving the primary frequency
components of the signal and effectively
reducing background noise.
Next, the normalization enhancement step
standardized the amplitude of the filtered
signal. By mapping the signal amplitude to a
uniform range (e.g., [0, 1]), amplitude
differences were eliminated, enhancing signal
features. This process improved signal stability
and provided stable input data for subsequent
steps. After normalization, the signal features

became more pronounced, aiding further
analysis.
Moving average filtering was then applied to
the normalized signal for smoothing. This
technique effectively reduced random noise by
averaging over a sliding window, improving
signal smoothness and stability. The window
size was selected based on signal
characteristics and noise levels to optimize the
filtering effect. After this step, the periodic
characteristics of the signal became clearer,
and noise interference was effectively
suppressed.
Finally, we used a combination of
Autocorrelation Function (ACF) and Power
Spectral Density (PSD) analysis for heartbeat
coherence detection. ACF successfully
identified periodic features in the signal by
calculating correlations at different time delays,
which is crucial for extracting heartbeat signals.
PSD analysis quantified the energy distribution
across different frequencies, further confirming
the presence and frequency characteristics of
the heartbeat signal. Combining these
techniques allowed for clear extraction of
heartbeat's periodic components and effective
differentiation of vital signs from complex
background noise.
Overall, the algorithm demonstrated excellent
performance in complex post-disaster
environments. Experimental results showed
that the method effectively extracts weak
heartbeat signals with good robustness and
high precision. This technology provides a
reliable and practical solution for vital signs
detection in post-disaster rescue operations,
significantly improving rescue efficiency and
success rates.
Figure 5 shows the experimental processing
results: (a) displays the original audio
waveform, (b) shows the processed audio
waveform, and (c) presents the processed
audio spectrogram. The spectrogram clearly
reveals independent heartbeat envelopes,
indicating high accuracy of the proposed
algorithm. The clear display of heartbeat signal
features in the spectrogram allows for precise
identification of heartbeat presence after
processing.
By generating voice files from the processed
results and playing them in real-time for
rescuers, the detection can be verified by the
human ear. This approach simplifies the
algorithm's complexity and reduces reliance on
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computational power. Traditional AI
algorithms often require high computational
power and hardware resources, while this
method, using human hearing instead of
complex AI algorithms, lowers processor
power consumption and hardware resource
demands. This optimization not only reduces
algorithm complexity but also simplifies
hardware system design, making the system
overall more efficient.
This method's advantage lies in its ability to
perform real-time heartbeat detection without
relying on high computational resources,
making it particularly suitable for battery-
powered rescue devices. This optimization
enhances system reliability and maintains high
performance in resource-constrained
environmentts[19], providing a practical
solution for vital signs detection in post-
disaster rescue tasks.

(a) Raw Waveform

(b) Processed Waveform

(c) Spectrogram
Figure 5. Algorithm Processing Results

5. Conclusion
This paper presents a heartbeat detection signal
processing algorithm based on laser speckle
vibrometry, aimed at enhancing vital signs
detection capabilities in post-disaster rescue
operations. By applying laser speckle
vibrometry technology, we have designed a
signal processing scheme incorporating steps
such as signal preprocessing, noise filtering,

and multi-scale analysis to improve the
extraction accuracy and robustness of heartbeat
signals.
Experimental results demonstrate that the
algorithm effectively extracts weak heartbeat
signals from complex environments.
Specifically, through low-pass filtering to
remove high-frequency noise, normalization
enhancement to standardize signal amplitude,
moving average filtering for signal smoothing,
and combining Autocorrelation Function (ACF)
and Power Spectral Density (PSD) analysis for
heartbeat coherence detection, the algorithm
exhibits excellent detection performance. The
processed audio waveforms and spectrograms
clearly reveal the features of the heartbeat
signal, validating the algorithm’s high
accuracy and robustness.
Additionally, experiments show that
generating audio files from the processed
results and playing them in real-time for rescue
personnel makes heartbeat recognition by the
human ear feasible. This approach not only
simplifies the complexity of the algorithm but
also reduces reliance on computational power,
making it particularly suitable for battery-
powered rescue devices. Compared to
traditional high computational power AI
algorithms, this method lowers processor
power consumption and hardware resource
demands, optimizing the system.
However, the current experimental results are
primarily obtained in controlled laboratory
environments. In practical applications,
various challenges such as environmental noise
variations, diversity of interference sources,
and real-world operational conditions may
arise. Therefore, when applying this
technology to real post-disaster rescue
scenarios, it is crucial to address these practical
issues to ensure its stability and reliability in
various complex and extreme environments.
Future research should focus on the following
aspects: First, further optimizing the algorithm
for extreme environmental conditions
encountered in real-world applications to
enhance its robustness. This includes
improving noise suppression techniques,
enhancing signal processing capabilities, and
increasing the algorithm’s adaptability to
different backgrounds. Second, integrating
real-time processing and data analysis
technologies with existing methods to improve
the efficiency and accuracy of heartbeat
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detection.
Additionally, with ongoing advancements in
computational technology, exploring the
integration of this method with advanced
machine learning techniques could further
enhance detection performance. Practical field
testing and optimization in actual post-disaster
rescue tasks should also be a key focus for
future work to ensure the reliable application
of this technology in real-world environments.
In summary, the laser speckle vibrometryased
heartbeat detection signal processing algorithm
demonstrates excellent performance in
laboratory settings, providing a powerful tool
for vital signs detection in post-disaster rescue
operations. Future research should not only
focus on further optimizing the technology but
also addressing the challenges of practical
applications to advance its real-world use and
development.
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