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Abstract: In this paper, the Hopf bifurcation
of the time-delay epidemic model is deeply
studied, and the stability and bifurcation
conditions are analyzed by combining theory
and numerical simulation, so as to provide a
scientific basis for the prevention and control
strategy. Firstly, the epidemic dynamics
model with time delay is constructed. Then by
applying stability theory and bifurcation
theory, we have conducted a detailed analysis
of the local stability of the model equilibrium
point and identified the delay threshold τ0
that causes Hopf bifurcation to occur. Using
mathematical theory and numerical
calculation, the time-delay dynamic figure of
the system is drawn, which provides
theoretical support for the prevention and
control of infectious diseases. The analysis of
complex mathematical phenomena has
deepened our understanding of infectious
disease prevention, enriched the delay model
theory, and helped formulate scientific
prevention and control strategies.
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1. Introduction
When dealing with emerging threats, it is crucial
to understand and accurately predict the
dynamics of infectious disease transmission.
These insights are not only the premise of taking
effective prevention and control measures, but
also the cornerstone of formulating public health
policies and ensuring rapid and appropriate
response to sudden outbreaks. The complex and
dynamic nature of infectious diseases has
stimulated the wide interest of the scientific
community and promoted the development of
diversified mathematical models. These models
have deeply analyzed the trend of the epidemic
situation, greatly enriched our cognition and
enhanced the social response and preparation
ability.
The classic SIR model was proposed by Cooke[1],

which describes the spread of epidemics in a
population through a compartment model.
Subsequently, many scientists also extended SIR
and proposed SEIR[2] and SEIQR[3].
Time delay, the lag effect in the transmission, is
widespread in the transmission of infectious
diseases, covering the latency from exposure to
symptom appearance and the non-timeliness of
the recovery process. Incorporating time lag
factors into the model has immeasurable value
for accurately describing the dynamic evolution
of infectious diseases. It can significantly
improve our understanding and prediction ability
of epidemic development, and make the
prediction results closer to reality.
Liu et.al[4] considered the dynamic behavior and
optimal control problem of a class of time-delay
model, and first discussed the influence of
time-delay on stability, and also found that Hopf
bifurcation occurs at a specific time delay.
Tchuenche and Nwagwo[5] constructed a class
of SIR models with time delay based on the
research results of multiple scholars. In order to
further explore the stability characteristics of the
model, they ingeniously applied the Lyapunov
function method for analysis and effectively
verified the reliability of the conclusions
obtained through numerical simulation.
Furthermore, we note that with subtle variations
in time delay, the equilibrium point of the
system may exhibit complex bifurcation
phenomena. Based on this new discovery, we
conducted an in-depth analysis of the existence
of Hopf bifurcation, aiming to reveal the deeper
impact of time delay on the dynamic behavior of
infectious disease models.

2. Dynamic Analysis
Based on the achievements of many scholars, a
class of time-delay SIR models is proposed:
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where,  is effective daily contact rate, 1 is
disease-induced death rate in the interval
 0, ,  is death rate of the population
( 1  ),  is birth rate,  is daily recovery
rate of the infection,  is time delay.
Using the regeneration matrix method, they
calculate the basic reproduction number.
Since the first two equations are independent of
the second equation, we simplify the above
equation system to obtain:
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Hopf Bifurcation
The initial condition is  1 2,   ,

    2, 0 ,C C R     , where,

  2 2, : 0, 0 , 0, 1, 2.iR S I R S I i       (4)
At this point, we further analyze the bifurcation
and periodicity of the equilibrium point of
endemic diseases.
Assume endemic equilibrium  * * *,E S I ,
solve
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We obtain endemic equilibrium.
Then, the characteristic equation of *E
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we can get
   12

1 2 3 4 0n n e n n          (9)
where,

2 * * * * *
1 2 3 42 , , ,n n n I S n I S I                   
Assuming equation (3) has pure imaginary
roots  0i    , we can obtain

      12
1 2 3 4cos sin 0in n i e in n           

Separate the real and imaginary parts to obtain:
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Add the squares of the two equations, we get
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Theorem When 0  , the Hopf bifurcation
occurred near the endemic equilibrium *E .
Proof By simultaneously solving the two
equations presented in (2.3), we can accurately
determine the critical value of time delay p :
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where, 0,1,2p  
According to the previous conditions, we can get
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Then take the derivative of equation (10) on 
and obtain,
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Substitute i  , 0  , we get
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From the two equations of (15),
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Substitute (16) into (17), the transverse
condition can be obtained
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According to the previous calculation, the
system meets the transverse condition for
generating Hopf bifurcation, so it can be seen
from the Hopf bifurcation theorem of
multidimensional time-delay system[6], when

0  , the Hopf bifurcation occurred near the
endemic equilibrium *E . The proof is
complete.

3. Numerical Simulation
We use ode 45 in MATLAB for numerical
simulation. According to the theorem, the
endemic equilibrium point is unstable, where the
system generates Hopf bifurcation, as shown in
the figure 1 and figure 2. From these two figures,
we can conclude that the disease is in an
oscillatory state, which may be more prone to
spiral up, leading to large-scale outbreaks.

Figure 1. When 0  , Time Series Diagram
of I .

Figure 2. When 0  , Time Series Diagram
of S .

4. Conclusion
In this paper, the Hopf bifurcation of SIR
epidemic model with time delay is deeply
studied. Through mathematical analysis and
numerical simulation, the complex dynamic
behavior and the significance of prevention and
control strategies are revealed. The stability of
the equilibrium point is analyzed, and the time
delay threshold is determined to cause Hopf
bifurcation. The dynamic trajectory diagram
intuitively shows the behavior of the system
which changes at any time. The research
enriches the theory of infectious disease
dynamics and provides an important reference
for the formulation of prevention and control
strategies. We firmly believe that with the
deepening of research and technological
innovation, we will have a more accurate
understanding of the spread of infectious
diseases, contribute to public health prevention
and control, and safeguard human health and
safety. This is not only the expansion of
scientific knowledge, but also the social
responsibility.
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