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Abstract: With the rapid development of
internet technologies and the widespread
adoption of smart devices, social media
platforms have become significant channels
for information dissemination and public
sentiment expression. In particular, new
media formats such as short videos have
shown a substantial impact on public
opinion guidance and emotional
transmission, making sentiment analysis of
short video content highly meaningful.
However, existing research has limitations
in modality interactions, often employing
weighted summation or self-attention
mechanisms for deep fusion of extracted
features. These approaches fail to fully
account for the complex local dependencies
and hierarchical structures among
modalities. To address these issues, this
paper proposes a fine-grained sentiment
analysis model for public opinion videos
based on Conformer and multi-layered
interaction attention mechanisms, termed
DW-MIACon. The model first utilizes
DeBERTa, CLIP, and Wav2Vec models to
extract features from text, images, and
audio, respectively. Subsequently, the
extracted multimodal features are fused
using a Dynamic Weighted Multi-layered
Interaction Attention (DW-MIA)
mechanism, generating rich fusion feature
representations. Finally, a Conformer
model is employed to deeply integrate the
fused features, capturing complex
interactions and local dependencies between
modalities. Experimental results
demonstrate that the proposed model
significantly outperforms existing
approaches in multimodal sentiment
recognition tasks, notably enhancing the
accuracy of fine-grained sentiment
classification and the ability to identify
subtle emotional nuances.
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1. Introduction
In today’s society, characterized by the rapid
advancement of internet technologies and the
widespread adoption of smart devices, social
media platforms have gradually become key
channels for information acquisition, opinion
expression, and interactive communication.
According to the latest statistics released by
the China Internet Network Information Center
(CNNIC), as of August 2024, China's internet
penetration rate has reached 78.0%, with
nearly 1.1 billion internet users. This vast user
base not only provides social media platforms
with rich data resources but also offers a broad
research domain for public opinion studies.
Research has shown that short videos, due to
their ease of dissemination, real-time updates,
and high interactivity, have significant
advantages in information propagation and
public opinion guidance. Short video
applications, represented by platforms like
Douyin and Kuaishou, exhibit explosive
growth in the speed and influence of online
public opinion dissemination. In the post-truth
era, public emotions often surpass objective
facts, becoming a powerful force that shapes
online public opinion[1]. However, this
phenomenon is also accompanied by the
proliferation of misinformation and the spread
of negative public sentiment, posing potential
threats to social stability. Therefore, effectively
monitoring, deeply analyzing, and
appropriately responding to short video content
have become critical issues urgently needing
exploration within the academic community.
Sentiment analysis aims to identify the
underlying emotional tendencies in data by
analyzing various modalities such as text,
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images, and audio. Traditional sentiment
analysis research mainly focuses on coarse-
grained sentiment recognition at the macro
level, such as classifying sentiments into
positive, negative, or neutral categories. In
contrast, fine-grained sentiment analysis
provides more detailed sentiment labels,
offering a more precise reflection of users’
emotional states. This is particularly
significant for understanding and analyzing
user behavior patterns on social media.
The core challenge of multimodal sentiment
analysis lies in effectively integrating data
from different modalities to accurately identify
emotional information. Multimodal fusion
methods can be broadly categorized into three
types: early fusion, late fusion, and hybrid
fusion. Early fusion involves the direct
combination and input-level fusion of low-
level features, which has been proven effective
in predicting multi-label sentiments. Late
fusion, on the other hand, integrates features
from each modality during the decision phase,
preserving the independence of modalities but
often overlooking the interaction details
between them. Hybrid fusion employs a
hierarchical approach to fuse features between
modalities at different stages and is one of the
current research focuses. Williams et al. [2]

combined low-level feature fusion with
bidirectional long short-term memory
networks (Bi-LSTM), demonstrating the
effectiveness of early fusion techniques in
multi-label prediction. Zadeh et al. [3] proposed
the Memory Fusion Network (MFN), a neural
network architecture for multi-view learning
that interprets interactions across different
modalities and sequentially models multimodal
features at the same time step. In recent years,
self-attention mechanisms, such as those used
in BERT and CLIP, have been widely applied
in multimodal sentiment analysis, showing
excellent performance in feature extraction.
The MARN model[4]utilizes a multi-layer
attention mechanism to explore cross-modal
emotional contexts within time steps, storing
these contexts in hybrid memory blocks, thus
enhancing the understanding of cross-modal
associations and improving the use of cross-
modal information for sentiment
analysis.However, existing methods often
adopt weighted summation or self-attention
mechanisms during the modality fusion stage,
frequently neglecting the complex local

dependencies and hierarchical structures
among modalities. To enhance modality
interaction, many studies employ strategies
that independently extract unimodal features
and directly fuse them, failing to fully explore
the complex relationships between modalities.
Han et al.[5] introduced the concept of bimodal
fusion by calculating modality-related
increments and modality difference increments
separately, training two components to learn
their probability distributions. Williams et al.[2]
proposed a sequence learning approach based
on input-level feature fusion and bidirectional
long short-term memory (BLSTM) deep neural
networks (DNNs), where audio, video, and text
modalities are fused at the input level for
emotion recognition. While these methods
improve fusion effectiveness to some extent,
they still fall short in capturing the
comprehensive interactions among the three
modalities.
To address these challenges, this paper
proposes a fine-grained sentiment analysis
model for public opinion videos based on
Conformer and Multi-layered Interaction
Attention, termed DW-MIACon. Initially, the
DeBERTa, CLIP, and Wav2Vec models are
employed to extract features from text, image,
and audio data, respectively. These features are
fused using a Dynamic Weighted Multi-
layered Interaction Attention (DW-MIA)
mechanism, which generates bimodal fusion
features that are further integrated with the
third modality, enabling a deeper exploration
of the interrelationships and complementarity
among different modalities. This process
generates richer modality feature
representations. Finally, the Conformer model
is utilized to perform deep fusion of these
multimodal features. By combining
convolution and self-attention mechanisms, the
Conformer model effectively captures local
dependencies among modalities, enhancing the
depth and efficacy of the fusion process.
Through this comprehensive approach, a high-
dimensional, multimodal feature fusion vector
is obtained for sentiment analysis.

2. Related Work
Multimodal sentiment analysis aims to
utilize a combination of various data
modalities, such as text, audio, images, and
videos, to perform sentiment recognition
and analysis. Compared to unimodal
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sentiment analysis, multimodal sentiment
analysis can leverage the features of
different modalities to capture richer
emotional cues, effectively compensating
for the limitations of single modalities in
terms of information loss and
misinterpretation. By integrating
multimodal information, this approach
provides a more comprehensive and precise
understanding of the complexity and
diversity of emotions, making it widely
applicable in fields like sentiment analysis
and social media analytics.
The choice of modality fusion strategies is
crucial in multimodal sentiment analysis, as
it directly impacts the integration of
information from different modalities and
the accuracy of the final sentiment
recognition. Early fusion strategies
primarily include early fusion and late
fusion methods. Morency et al.[6]conducted
pioneering work in the tri-modal sentiment
analysis task by automatically extracting
features from text, visual, and audio data,
concatenating them, and feeding the
combined features into a Hidden Markov
Model (HMM) for classification. This work
provided preliminary validation of the
feasibility of multimodal sentiment analysis.
Yu et al.[7] further utilized Convolutional
Neural Networks (CNNs) and Deep Neural
Networks (DNNs) to extract features from
text and visual data, optimizing the process
through averaging or weighted fusion
strategies. However, these methods have
limitations in terms of modality interaction,
failing to fully explore the deep associations
and interdependencies between modalities.
To address these challenges, researchers
have proposed hybrid fusion strategies.
Hybrid fusion not only considers the
synergistic relationships between modalities
but also dynamically adjusts the weights of
each modality at different stages. Although
hybrid fusion strategies significantly
enhance model performance, their design
and training process are complex, requiring
more computational resources and
meticulous parameter tuning.
With the rapid development of deep
learning and attention mechanisms, their
application in multimodal sentiment
analysis has become increasingly prevalent.
Tsai et al.[8] introduced the MulT model,

which employs bidirectional cross-modal
attention mechanisms to enable effective
interactions between multimodal sequences,
improving the accuracy of sentiment
recognition. Yang et al.[9] developed the
Cross-Modal BERT (CM-BERT), which
integrates the interactions between text and
audio modalities into the pre-trained BERT
model, yielding enhanced feature
representations. Feng Cheng et al.[10]
proposed a multimodal sentiment analysis
model based on top-down mask generation
and stacked Transformers. This model
generates feature masks through a mask
generation module and applies them to
other modalities, effectively exploring the
relationships and complementarities among
different modalities. Junjie Wu et al.[11]
introduced a bimodal sentiment
computation model, which uses Multilayer
Perceptron (MLP) and Bidirectional Long
Short-Term Memory (BiLSTM) networks
for feature extraction. The extracted
features are then fused using MLP and self-
attention mechanisms.

3. Methods
The proposed DW-MIACon framework for
fine-grained sentiment analysis of public
opinion videos, as illustrated in Figure 1.,
consists of four main modules: feature
extraction, modality interaction, modality
fusion, and sentiment classification. In the
feature extraction module, the DeBERTa,
CLIP, and Wav2Vec models are employed to
extract features from text, image, and audio
data, respectively. The modality interaction
module employs a Dynamic Weighted Multi-
layered Interaction Attention (DW-MIA)
mechanism, which performs multi-layered
interaction and fusion of the extracted features.
This mechanism dynamically weights and
adjusts the features of different modalities,
effectively enhancing the synergistic effects
between them. In the modality fusion module,
a Conformer model is used to deeply fuse the
interacted features. The Conformer model
combines convolutional and self-attention
mechanisms to capture local dependencies
between modalities, comprehensively
considering both detailed and overall
information of multimodal features, thereby
improving the depth and effectiveness of
feature fusion. Finally, these deeply fused
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features are fed into the sentiment
classification module, which performs
sentiment analysis to generate fine-grained

sentiment classification results for public
opinion videos.

Figure 1. Framework of Fine-Grained Sentiment Analysis Model for Public Opinion Videos
3.1 Feature Extraction Module
The feature extraction module is
fundamental to the proposed fine-grained
sentiment analysis model for public opinion
videos, responsible for extracting high-
quality modality features from text, image,
and audio data. This module provides rich
feature representations for subsequent
multimodal interaction and fusion by
utilizing the DeBERTa, CLIP, and
Wav2Vec models to process text, image,
and audio data, respectively, ensuring
precise and comprehensive representation
of the data features of each modality.
For text data, this study employs the
DeBERTa model as the feature extraction
tool. DeBERTa, a language model based on
the Transformer architecture, introduces
disentangled attention mechanisms and an
enhanced mask decoder, significantly
improving the performance of masked
language models[12]. The model separates
context information into content and
positional aspects, enabling more precise
capture of text semantics, particularly
enhancing its ability to represent complex
semantic and syntactic structures.
Let the input text sequence be � =
{�1 , �2, . . . , ��}, The feature representation of
the text, �text , is obtained using the
DeBERTa model, as illustrated in Formula
(1).

�text = DeBERTa � (1)
The CLIP model, a multimodal pre-training

model based on contrastive learning, maps
images and text into the same semantic
space, effectively extracting semantic
features of images[13]. The Vision
Transformer (ViT) module of CLIP extracts
features from images, enabling comparative
learning between image and text features
during multimodal interaction, thus
enhancing the alignment between the
modalities. Consequently, this study selects
the CLIP model for image feature extraction.
Given an input image � , the feature
representation �image is extracted using
CLIP's ViT module, as illustrated in
Formula (2).

Fimage = ViT I (2)
Here, the image � is divided into several
patches, processed through patch
embedding and positional encoding, and
finally transformed into the global semantic
representation�image using the Transformer
layers.
Audio feature extraction is performed using
the Wav2Vec model[14], a self-supervised
learning-based speech feature extraction
model. Wav2Vec captures high-dimensional
speech features from large amounts of
unlabeled audio data through self-
supervised learning, effectively capturing
temporal and spectral characteristics of the
audio. These features provide precise
acoustic information for sentiment analysis,
particularly excelling in capturing
emotional variations and tonal expressions.
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Thus, Wav2Vec is chosen as the audio
feature extraction model. Given an input
audio signal � , the feature representation
�audio  is extracted , as illustrated in
Formula (3).

Faudio = Wav2Vec A (3)
The audio signal first undergoes
preliminary processing through the Feature
Extractor, followed by high-dimensional
feature representation learning via the
Encoder, ultimately yielding the audio
features �audio for subsequent interactions.

3.2 Dynamic Weighted Multi-layered
Interaction Attention Mechanism
In multimodal sentiment analysis tasks, the
information embedded within different
modalities such as text, image, and audio
exhibits significant heterogeneity and
complementarity. Each modality uniquely
contributes to emotional expression, and a
single modality often fails to capture the
subtle nuances of sentiment
comprehensively. Thus, effectively
enhancing the interactions between
modalities to extract more comprehensive
and profound emotional information
remains a key challenge in multimodal
sentiment analysis. Additionally, the
importance of each modality in expressing
sentiment can vary depending on the
context. For instance, audio may convey
more emotional information than images in
certain scenarios, whereas text might serve
as the primary carrier of sentiment in others.
Consequently, static feature fusion methods
may not fully exploit the potential of each
modality.
To address these issues, this paper proposes
a Dynamic Weighted Multi-layered
Interaction Attention mechanism (DW-
MIA). The DW-MIA mechanism is
composed of multiple interaction modules,
each incorporating a dynamic weighting
strategy that provides adaptable modal
weight allocation for each layer of the
interaction attention modules. This design
enables layer-by-layer interaction and
fusion of modality features, facilitating
smoother information flow between
modalities while adaptively adjusting the
influence of each modality. As a result, it
enhances the exploration of hidden inter-

modal relationships, focuses more on
critical modalities, and improves the ability
to capture subtle emotional information.
Taking text features as an example, the
interaction between text and image modalities
is first achieved through a Cross Attention
Mechanism. This mechanism calculates the
interaction weights between audio and image
modalities, enabling weighted feature fusion[15].

image_te��_attention = Attention query =
Ftext, key = Fimage, value = Fimage (4)

After the initial cross-attention calculations,
the model introduces a dynamic weight
computation layer. This layer calculates
dynamic weights w for each modality
through a fully connected layer and
normalizes them using a Softmax activation
function. The weight computation is
described by the following formula (5):

w = Softmax(Dense(fusion x)) (5)
where fusion x refers to the initial fused
features (i.e., the concatenation of image,
audio, and text features). The dynamic
weight w is split into three components: ��
、��、�� corresponding to the image, text,
and audio modalities, respectively.
The dynamically computed weights are then
used to perform weighted fusion of each
modality's features. For example, text
features are weighted through image-text
cross-attention and dynamic weights, as
shown in the following equations (6-7):

Ftext1 = Ftext + wt ∗ text_image_attention(6)
Ftext2 = Ftext1 + wt ∗ text_audattention (7)

where �� is the dynamic weight associated
with the text modality, �����1 represents the
text features after bi-modal interaction, and
�����2 denotes the text features after tri-
modal interaction. The symbol ∗ denotes the
multiplication operation. The
text_image_attention refers to the text-
image bimodal fusion features, while
text_aud_attention refers to the text-audio
bimodal fusion features.
Similarly, audio and image features undergo
interaction with corresponding dynamic
weights. The dynamic weighted multi-layered
interaction attention mechanism enables multi-
level interactions and deep fusion of features
from different modalities, while dynamically
adjusting each modality's impact on sentiment
recognition. This adaptive feature adjustment
strategy focuses on the most representative
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modality features based on the actual
sentiment expression needs, thereby
significantly enhancing the accuracy and
robustness of sentiment recognition.
Additionally, the multi-layered interaction
design allows for a more comprehensive
exploration of the subtle relationships between
modalities, improving the overall expressive
capability of the sentiment analysis model.

3.3 The Conformer-Based Multimodal
Feature Fusion
The Transformer architecture has
demonstrated outstanding performance in
various sequence tasks. However, its self-
attention mechanism has limitations in
capturing local information, which can lead
to performance degradation in tasks such as
speech processing and long text sequence
analysis. In contrast, Convolutional Neural
Networks (CNNs) excel at capturing local
features. To address these challenges, the
Conformer model was introduced,
combining the strengths of convolution and
self-attention mechanisms. By embedding
convolutional modules within the
Transformer architecture, the Conformer
not only enhances the ability to capture
global information but also effectively
addresses the shortcomings of traditional
self-attention mechanisms in handling local
dependencies.
The core architecture of the Conformer

model consists of four main components: a
Feed-Forward Neural Network (FFN)
module, a Multi-Head Self-Attention
(MHSA) module, a Convolutional module,
and a Layer Normalization module. These
modules are arranged in a specific sequence,
forming a complete Conformer unit, as
illustrated in Figure 2.
In the feature fusion module, the text features
�����2 ∈ ���×�� , image features ������2 ∈
���×��  , and audio features
������2 ∈ ���×��  , extracted from the
feature interaction module, are first merged
into a unified fusion feature matrix �������  .
This fusion feature matrix is then fed into
multiple Conformer units for deep feature
interaction and information extraction:

������� =
�����2; ������2; ������2 ∈ � ��+��+�� ×� (8)

where ��, ��, ��  denote the sequence lengths

of the text, image, and audio features,
respectively, and ��, �� , �� represent the
dimensions of the text, image, and audio
features.

Figure 2. Conformer Structure
The input features are first processed by the
Feed-Forward Neural Network (FFN)
module. In the Conformer, the FFN module
consists of two linear transformations with
a nonlinear activation function designed to
enhance the model’s stability and nonlinear
representation capabilities. To further
improve performance, the Conformer
introduces an FFN module both before and
after the self-attention module. The
processing steps are as follows equations
(9-11):

Fffn1 = FFN1 F = RELU FW1 + b1 (9)
����2 = ���2 ����1 = ����1�2 + �2 (10)
Finally, a residual connection is added:

���� = � + ����2 (11)
���1 and ���2  are feed-forward neural
network layers, including linear
transformations and activation functions.
The residual connection ( + ) enhances the
model's stability and expressive capacity.
Next, the Multi-Head Self-Attention
(MHSA) module is responsible for
capturing long-range dependencies between
different modalities. This module computes
attention weights over various parts of the
input sequence, enabling dynamic
information weighting. By employing the
multi-head mechanism, the Conformer
learns attention distributions from multiple
representation spaces, enriching feature
representation. The calculation process is
represented by the following equations (12-
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15):
Q, K, V = FffnWQ, FffnWK, FffnWV (12)

Attention Q, K, V = softmax QKT

dk
V (13)

The output of the multi-head self-attention
is:

����� = ������ ℎ���1, …, ℎ���ℎ �� (14)
Adding residual connection and
normalization:

Fattnout = LayerNorm Fffn + Fattn (15)
Here, Q、K、V are the query, key, and
value matrices obtained through linear
transformations, and �� is the dimension of
the key vectors. ℎ���� is the output of the �
attention head, and ��  is the output
linear transformation matrix.
The convolution module is a key feature
that distinguishes the Conformer from the
traditional Transformer architecture, as it
captures local information within features
through 1D convolution. The Conformer
employs Depthwise Separable Convolution
to effectively capture local temporal
features while reducing the number of
parameters. The main steps of the
convolution module include layer
normalization, 1D pointwise convolution,
Gated Linear Unit (GLU) activation, and
depthwise convolution. The calculation
process is represented by equations (16-17):

Fconv = GLU Fattnout ∗ Wconv1 ∗
Wconv2 (16)

where GLU denotes the Gated Linear Unit, ∗
indicates the product operation, and Wconv1
and Wconv2  are the convolution kernel
matrices.
A residual connection and normalization are
then added:

Fc = LayerNorm Fconv + Fattnout (17)
Subsequently, �� is input into the second
feed-forward module, following the same
calculations as previously shown, resulting
in ����‘.
Finally, the output features from the second
feed-forward module, ����‘  , undergo
Layer Normalization to ensure consistent
data distribution across different layers,
aiding in stabilizing the training process.
The calculation of Layer Normalization is
represented by equation (18):

Fout = LayerNorm Fffn‘ (18)
After processing through multiple
Conformer blocks, the deeply fused features

����  are obtained.
Through its multi-level combination of
feed-forward, self-attention, and
convolution modules, the Conformer
achieves joint modeling of global and local
features. The fused features ���� not only
enhance the interaction relationships
between modalities but also preserve the
key information of each modality's features,
providing a rich input for subsequent
sentiment classification tasks.

3.4 Sentiment Classification Module
The primary goal of the sentiment
classification module is to conduct the final
sentiment analysis using the comprehensive
features extracted from different modalities in
the video (text, image, and audio) and to
produce fine-grained sentiment classification
results. First, the deeply fused multimodal
features from the Conformer model are fed
into the classification network. The core
component of this network is a fully connected
(Dense) layer, which transforms the high-
dimensional fused features ����  into a fixed-
dimensional vector ℎ corresponding to
different sentiment categories. The operation
of the Dense layer can be expressed as
Equation (19):

h = W ⋅ Fout + b (19)
where � is the weight matrix and � is the bias
term.
To enhance classification accuracy, a ReLU
activation function and a Dropout layer are
added after the Dense layer. The ReLU
activation function is defined as Equation (20):

ReLU = max 0，x (20)
The processed feature vector is then passed
through a Softmax layer to compute the
probability distribution for each sentiment
category. The Softmax function is given by
Equation (21):

Softmax zi = ezi

j=1

C
 � ezj

(21)

where �� represents the score for the iii-th
category, and � is the total number of
sentiment categories. The Softmax function
converts these scores into a probability
distribution, reflecting the likelihood of each
sentiment category[16].
Finally, the model selects the sentiment
category with the highest probability as the
sentiment label of the video. This step is
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defined by Equation (22):
Emotion = arg maxi   Softmax zi (22)

This step identifies the most likely sentiment
category by comparing the probabilities of
each sentiment class, generating the sentiment
classification result for the video.

4. Experiment

4.1 Dataset
As public attention to police enforcement and
related policies continues to grow, public
feedback on these issues has become a crucial
source of information. To analyze public
sentiment in depth and provide valuable
feedback to law enforcement, this study
collected a total of 3,000 police-related video
data through web scraping techniques. These
videos encompass various scenes of police
enforcement, policy interpretation, and social
reactions, aiming to reveal the public’s genuine
attitudes and emotional responses toward
police work through sentiment analysis. This
insight is intended to help law enforcement
better understand and respond to public
opinions and needs.
During the dataset construction process, the
collected videos were carefully screened and
preprocessed to ensure data quality and
representativeness. Specifically, the videos
were categorized into five sentiment labels:
Strong Positive, Weak Positive, Neutral, Weak
Negative, and Strong Negative. This
classification refines the depiction of public
sentiment toward police enforcement and
policies.After filtering and cleaning, 2,500
valid videos were obtained, with each category
comprising 500 videos.

4.2 Parameters’ Setting
In this study, to ensure the effectiveness and
performance of the proposed model,
experimental parameter settings covered
multiple aspects, including data preprocessing,
model training, and evaluation.
Data Preprocessing: Image data were resized
uniformly to 224x224 pixels to meet the input
requirements of the CLIP model. The pixel
values were normalized to the [0, 1] range to
ensure consistency of the input data. Text data
were tokenized using the DeBERTa tokenizer,
with the maximum sequence length set to 768
tokens to standardize the input format. Text
features were extracted using DeBERTa's pre-

trained word embeddings. Audio data were
resampled to a 16kHz rate, and features were
extracted using the Wav2Vec model.
Model Training: The learning rate was set to
0.0001, with a learning rate scheduling
strategy employed to dynamically adjust the
rate based on training progress. The batch size
was set to 32 to balance training speed and
memory usage. The AdamW optimizer was
used to cater to the training needs of the model.
The cross-entropy loss function was employed
to handle the multi-class sentiment
classification task. To prevent overfitting,
regularization techniques such as Dropout
layers and L2 regularization were applied.
Evaluation: Accuracy was used as the primary
evaluation metric to quantify the model's
performance in the fine-grained sentiment
classification task.

4.3 Experimental Results
To validate the effectiveness of the
proposed fine-grained sentiment analysis
model for public opinion videos based on
Conformer and multi-layered interaction
attention (DW-MIACon) in multimodal
feature fusion, a series of comparative
experiments were conducted. These
experiments systematically evaluated the
performance of different fusion methods in
multimodal sentiment analysis tasks.
In the first set of experiments, several
representative multimodal interaction
models were selected as baseline models for
comparison with DW-MIACon. The
specific models and their interaction
mechanisms are described as follows:
TFN[17]: Tensor Fusion Network (TFN) uses
a triple Cartesian product to decompose
unimodal features into tensors and
computes the outer product between
modalities, capturing high-order
interactions among features.
MFN[3]: Memory Fusion Network (MFN)
leverages gated memory networks and
attention mechanisms, using gated units to
capture dynamic interactions among
multimodal features over time, enhancing
the model's ability to represent
dependencies between modalities.
LMF[18]: Low-rank Multimodal Fusion
(LMF) is an improvement over TFN,
employing low-rank tensor decomposition
techniques to enhance the efficiency and
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performance of multimodal interactions
while reducing computational complexity.
MulT[8]: Multimodal Transformer (MulT)
utilizes directional cross-modal attention
mechanisms to flexibly handle interactions
between multimodal data at different time
steps, implicitly addressing temporal
alignment issues between data.
MMIM[19]: Multimodal Mutual Information
Maximization (MMIM) introduces a
hierarchical mutual information
maximization framework that guides the
model to learn shared representations across
modalities, enhancing collaborative learning
between them.
DW-MIACon: Dynamic Weighted Multi-
layered Interaction Attention with
Conformer (DW-MIACon) adopts a
dynamic weighting strategy, adjusting the
weight of each modality according to its
importance at different stages of the task.
Through multi-layered attention
mechanisms, it performs stepwise
interactions of features from different
modalities, finely capturing features from
each modality.
The comparison results between the DW-
MIACon model and the aforementioned
baseline models are shown in Table 1.
As shown in Table 1., the DW-MIACon
model significantly outperforms other
baseline models in terms of accuracy,
demonstrating its superior performance in
multimodal feature interaction and fine-
grained sentiment analysis. Specifically, the
DW-MIACon model achieves an accuracy
of 73.08%, which represents an
improvement of 8.24, 6.02, 5.14, 4.36, and
2.26 percentage points over the TFN, MFN,
LMF, MulT, and MMIM baseline models,
respectively. These results highlight the
significant advantages of DW-MIACon in
capturing emotional features and interacting
with multimodal data.
Table 1. Experimental Results of Sentiment

Classification Model
Model Accuracy

Baseline

TFN 0.6484
MFN 0.6606
LMF 0.6694
MulT 0.6872
MMIM 0.7082

Ours DW-MIA 0.7308
Traditional interaction methods, such as

TFN, perform feature interactions using a
triple Cartesian product, capturing static
relationships between modalities but
lacking the capability to dynamically
capture high-order features. MFN employs
gated memory networks and attention
mechanisms for modality interaction in the
temporal dimension but struggles with
complex, detailed emotional features across
modalities. LMF improves computational
efficiency through low-rank decomposition
techniques, but its feature interaction
richness is reduced, limiting its
performance in fine-grained sentiment
analysis. MulT enhances temporal
alignment in multimodal interaction through
directional cross-modal attention
mechanisms but falls short in deeply
integrating static features. MMIM enhances
the shared and aligned representations of
multimodal features by maximizing mutual
information between modalities, yet it still
lags behind DW-MIACon in capturing
nuanced and deep emotional features.
The DW-MIACon model, with its dynamic
weighting and multi-layered interaction
attention mechanism, effectively enhances
the fusion and emotional capture
capabilities of multimodal features,
allowing deep interaction at different levels.
This mechanism not only facilitates
information sharing between modalities but
also dynamically adjusts the contribution of
different modality features to sentiment
classification, thereby improving the overall
accuracy and robustness of the model.
In the second set of experiments, we
compared the Conformer model with other
commonly used multimodal fusion methods
to further validate the effectiveness of
Conformer in deep feature fusion. The
comparison methods include simple
concatenation (Concatenate), attention
mechanism (Attention), and Transformer.
The experimental results of various
multimodal fusion models are presented in
Table 2.

Table 2. Experimental Results of
Various Models for Multimodal Fusion

Model Accuracy
DW-MIA-Concatenate 0.6880
DW-MIA-Attention 0.6972

DW-MIA-Transformer 0.7128
DW-MIA-Conformer 0.7308
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As shown in Table 2., the DW-MIA-
Conformer model significantly outperforms
other commonly used fusion methods in
terms of multimodal feature fusion accuracy,
followed by Transformer, attention
mechanism, and simple concatenation.
Specifically, the DW-MIA-Conformer
model achieved an accuracy of 73.08%,
showing improvements of 1.80, 3.36, and
4.28 percentage points compared to DW-
MIA-Transformer, DW-MIA-Attention, and
DW-MIA-Concatenate, respectively.
The simple concatenation method
straightforwardly combines features from
different modalities; however, it fails to
deeply model the interactions between
modalities, limiting its fusion effectiveness
and making it challenging to fully exploit
the latent value of information from each
modality. The attention mechanism
improves the capture of key features but
lacks in-depth modeling of complex inter-
modal relationships, resulting in
performance superior to Concatenate but
still with substantial room for improvement.
As a classic deep fusion approach, the
Transformer effectively captures global
relationships between modalities through
self-attention mechanisms; however, its
relatively weak ability to capture local
dependencies impacts overall performance.
The Conformer model combines the
strengths of convolutional and self-attention
mechanisms, enabling it to capture both
local dependencies and global feature
information between modalities. This
enhances the model's deep interaction
capabilities, providing a better balance
between local and global dependencies
among modalities.

5. Conclusions
With the rapid development of social media
and the widespread popularity of short
video platforms, sentiment analysis faces
increasingly complex emotional expression
challenges. To deeply explore the intricate
relationships between modalities and fully
leverage the strengths of each modality in
extracting comprehensive and profound
emotional information, this study proposes
a fine-grained sentiment analysis model for
public opinion videos based on Conformer
and Multi-layered Interaction Attention

(DW-MIACon). Through refined and
multimodal sentiment analysis, the DW-
MIACon model can reveal emotions
embedded within video content, providing
more comprehensive and in-depth
emotional insights for public opinion
management.The DW-MIACon model
enhances the performance of multimodal
data in fine-grained sentiment analysis tasks
through four main modules: feature
extraction, modality interaction, modality
fusion, and sentiment classification.
Specifically, the feature extraction module
employs DeBERTa, CLIP, and Wav2Vec
models to extract high-quality features from
text, image, and audio data, respectively.
The modality interaction module utilizes a
Dynamic Weighted Multi-layered
Interaction Attention mechanism (DW-
MIA), which performs multi-layered
interactions and fusion of different modality
features. This approach allows for dynamic
weighting and adjustment of modality
features, enhancing the collaborative effect
between modalities. The modality fusion
module employs the Conformer model for
deep fusion, combining convolution and
self-attention mechanisms to
comprehensively capture both local and
global dependencies between modalities,
significantly improving the accuracy of
sentiment classification.Experimental
results demonstrate that the DW-MIACon
model consistently outperforms existing
methods in terms of accuracy, validating its
effectiveness and advantages in multimodal
fine-grained sentiment analysis.
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