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Abstract: This paper presents an overview
of the computer vision methodologies
employed in an image quality detection
project for parcel identification systems.
The core objective of this project is to
minimize erroneous chargebacks that occur
when the system fails to capture accurate
carton label information. Our developed
defect detection framework replaces the
labor-intensive and error-prone human
validation process, thereby significantly
reducing labor costs and improving the
accuracy of defect identification in parcel
identification images. The system uses a
multi-sided vision tunnel to capture images
of cartons from all angles. However, various
issues such as dirty cameras, out-of-focus
images, overly bright camera flashes, and
partial images can impair image quality,
leading to failures in automated parcel
receiving. Each failure incurs additional
costs for the logistics provider and may
result in unwarranted chargebacks to
partners, adversely affecting relationships.
To address these challenges, we propose a
computer vision-based approach to
systematically identify and exclude poor-
quality images from chargeback datasets,
preventing erroneous chargebacks. This
approach not only enhances the accuracy of
automated receiving operations, but also
supports downstream analyses to identify
locations with frequent image quality issues.
By partnering with these locations,
preventive measures can be implemented to
improve parcel image quality across the
network. The outcomes of this project aim
to streamline the automated receiving
process, reduce operational errors, and
foster better partner relationships by
ensuring fair and accurate chargeback
practices.
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1. Introduction
The Parcel Identifier (PID) system is a
sophisticated multi-sided vision tunnel initially
developed and implemented in large-scale
logistics operations, such as those used by
companies like Amazon. This system captures
images of each carton from all angles, which is
crucial for predicting carton contents and
facilitating the automated receiving process, as
it is shown in Figure 1. Chargeback programs
often leverage signals from such systems to
penalize partners who fail to place valid carton
labels. Precise carton label information is
critical for automated processing of carton
contents. However, inaccuracies in PID signals
can lead to erroneous chargebacks, adversely
impacting partner relationships and
experiences.
Currently, the process of identifying the root
causes of PID inaccuracies involves an
exhaustive and meticulous manual image audit
by the Chargeback Dispute Management team.
This manual process is not only labor-intensive
but also inherently prone to human error.
When a parcel fails to be auto-received, a
chargeback is automatically applied to the
partner. If the partner disputes this chargeback,
a manual review is undertaken to determine
whether the issue was due to the absence of a
valid label or poor image quality. Each
instance of a carton failing the automated
receiving process incurs additional costs.
Common causes for the system's failure to
accurately capture carton labels include dirty
cameras, out-of-focus images, excessively
bright camera flashes, and partial images.
The primary objective of this project is to
replace the current manual validation process
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with an automated, machine learning-based
framework that enhances accuracy and reduces
labor costs. By systematically identifying and
excluding poor-quality images, we aim to
prevent erroneous chargebacks and support
downstream analyses to identify and

collaborate with sites prone to image quality
issues. This collaboration will enable the
implementation of preventive measures to
improve PID image quality across various
regions and potentially extend to global retail
and fulfillment entities.

Figure 1. Flowchart of Current Chargeback Program and Dispute Process
To address these challenges, a comprehensive
software system has been developed that
leverages machine learning to systematically
identify and exclude defective images from the
chargeback process. This system categorizes
defect types based on preprocessing steps and
applies appropriate detection methods for each
type. It sequentially processes each image by
checking for bottom-side defects, generating
brightness histograms for classification, and
applying object detection techniques to extract
and analyze carton and label areas. Among
various evaluated models, we ultimately
selected the Single Shot Multi-Box Detector
(SSD) [1] for its balance of accuracy and
response time, making it well-suited for real-
time applications.
This project introduces an advanced software
system that automates the validation process,
significantly reducing the need for manual
intervention. The system enhances accuracy in
defect identification, thereby preventing
erroneous chargebacks and improving partner
relationships. Furthermore, it supports
downstream analyses to identify sites with
frequent image quality issues and implement
preventive measures. By improving PID image
quality, this project aims to streamline the
automated receiving process, minimize
operational errors, and contribute to a superior
overall experience for partners. This system
has been effectively implemented in Amazon's
logistics centers, demonstrating its value in
large-scale, real-world operations.

2. Problem Definition

2.1 Defect Types
The effectiveness of the Parcel Identifier (PID)
system in accurately scanning carton labels is
crucial for the automated receiving process.
However, several factors can cause the PID
system to fail in capturing clear and readable
images of carton labels. These failures can be
attributed to the following primary defect types:
 Dirty Bottom Camera: This occurs
when the camera view is from the bottom side
and the image appears blurry or fuzzy. This
defect is often accompanied by dark or light
vertical lines running throughout the image.
 Blurry/Image Out-of-Focus: In this
case, the camera view is not from the bottom,
but the label appears blurry, making the
barcode and text unreadable.
 Camera Flash too Bright: This defect
arises when the carton surface is highly
reflective, causing the black text on the carton
label to become excessively bright and
unreadable due to the camera flash.
 Partial/Cut-off Image: This issue
occurs when the image does not capture the
entire carton (partial) or there exists a line
cutting through the image, resulting in a
dislocated or incomplete image (cut-off).
 Black-out Image: This defect is
characterized by the camera being blacked out,
displaying only the starting screen, or
capturing an image where no carton is visible.
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The above defect types are the most prominent
reasons for the PID system's failure to scan
carton labels effectively. Addressing these
defects is essential to enhancing the accuracy
and reliability of the automated receiving
process, thereby reducing operational costs and
improving partner relationships.

2.2 Challenges
2.2.1 Unreliable label quality
The training labels are generated by annotators
using a data labeling tool that allows for the
inclusion of human annotators from various
sources. The images and label information are
stored in a cloud storage solution. Each image
is typically labeled by multiple annotators,
leading to potential disagreements on whether
an image is defective. Consequently, the label
information is presented as a dictionary, with
each key representing a defect type and the
value being a confidence score (e.g., {Dirty
Bottom Camera: 0.88, Blacked-out: 0.33,
Partial/Cut-off Image: 0.22}).
Some images may be labeled both as defective
and non-defective, such as {Dirty Bottom
Camera: 0.34, No Defect: 0.91}. The
confidence score indicates the proportion of
annotators who consider an image to contain a
specific defect type. Due to the varying nature
of defects, some are more challenging for
annotators to identify, resulting in lower
average confidence scores. This variability in
annotator judgment adds complexity to the
training process and can affect the overall
performance of the defect detection model.
The confidence scores for different defect
types are shown in Table 1.
Table 1. Confidence Scores for Different

Defect Types
Defect Type Average Score

Dirty Bottom Camera 0.805
Blurry/Out-of-Focus 0.472
Partial/Cut-off Image 0.539

Camera Flash too Bright 0.494
Black Out Image 0.778

The quality of our training labels depends on
these confidence scores, which are subject to
some level of uncertainty due to annotator
disagreements. To maintain high label quality,
we set a high threshold for the confidence
score to consider an image as containing a
certain defect. However, a higher threshold
results in fewer positive instances (defective

images), which can lead to model instability
and over-fitting issues. Figure 2 and Table 2
below show the histogram of Blurry/Out-of-
Focus defects and the breakdown relative to
different thresholds.

Figure 2. Histogram of Confidence Score
Distribution for Blurry

Table 2. Confidence Scores Breakdown
Defect Type Average Score

0-0.1 53
0.1-0.2 0
0.2-0.3 7
0.3-0.4 38
0.4-0.5 58
0.5-0.6 73
0.6-0.7 28
0.7-0.8 0
0.8-0.9 1
0.9-1.0 47

2.2.2 Insufficient training data
A total of 15,000 annotated images are
available. Disregarding confidence scores and
focusing solely on the appearance of defect
types, the breakdown is as follows in Table 3:

Table 3. Defect Count Breakdown
Defect Type Count

Dirty Bottom Camera 305
Blurry/Out-of-Focus 1255
Partial/Cut-off Image 95

Camera Flash too Bright 1311
Black Out Image 52

One obvious issue here is the uneven
distribution among defect types, which means
positive samples are not enough for some
defect types. For example, there are only 52
images labelled as blackout image defect. This
is primarily due to the difference in
probabilities of the occurrence of those defects
in our system. Based on the information we
have, only Partial/Cutoff Image and Dirty
Bottom Camera defects have decent number of
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positive training samples.
However, collecting more annotated images
may not resolve this issue, as most new images
will likely be non-defective. Therefore, we
need alternative methods to augment the
existing images: Image Augmentation and
Image Manipulation.
Image Augmentation. Image augmentation
involves creating new training examples by
slightly modifying the original images through
transformations such as rotation, flipping, and
color adjustments. Examples of commonly
used image augmentation techniques in our
scenario are shown in Figure 3.

Figure 3. Examples of Image
Transformations

Image Manipulation. Image manipulation
aims to restore degraded image content or
transform images to achieve desired outcomes.
In the PID project, we implemented Deep
Convolutional Generative Adversarial
Networks (DCGANs) [2] to generate new
positive instances for Black-out Image defects
(Figure 4).

Figure 4. Deep Convolutional Generative
Adversarial Networks (DCGANs)

2.2.3 Incorrect labeling logic
A Parcel Identifier (PID) image consists of
three parts: 1) Carton, 2) Carton Label, and 3)
Background (Figure 5). These parts have
varying levels of significance in determining
defect types and processes. For the automated
receiving process, the priority is: Carton
Label > Carton > Background. For defects

such as Blurry/Out-of-Focus Image, Camera
Flash too Bright, and Partial/Cutoff Image,
considering the background when detecting
these defects may result in an excessive
number of unnecessary chargebacks (false
positives), as the background does not contain
any information relevant to the receiving
process.

Figure 5. Different Parts of PID Image
However, a closer examination of the
originally annotated images reveals that
annotators often determine whether an image
is defective based on the entire image, not just
the carton part. This approach is misaligned
with the problem definition and expectations.
For instance, examples were found where
images containing clear carton and carton label
sections, but with blurry backgrounds, were
labeled as Blurry/Out-of-Focus defects (Figure
6).

Figure 6. Example of Mislabeled Blurry
Defect

To correct this labeling logic, additional
labeling tasks were created with improved
instructions to ensure that annotators focus on
the relevant parts of the image. Annotators
were instructed to relabel the affected images
accordingly. Furthermore, an object detection
model was developed to extract the carton and
carton label sections, allowing for
preprocessing of the images before training the
defect prediction model. Details of the object
detection model will be discussed in Section 4.
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Moreover, Partial Image and Cut-off Image are
inherently different defect types. In Cut-off
defects, one or two horizontal lines cut through
the image, while Partial defects occur when
only part of the carton is visible, not the entire
carton. Examples of these patterns are shown
in Figure 7.

Figure 7. Examples of Different Patterns in
Partial/Cut-off Image Defect

However, Partial Image and Cut-off Image
defects consist of only 52 images in total,
resulting in insufficient data, as described in
Section 3.2. To address this issue, non-
defective images were modified through
random line-cutting and partial region
extraction to generate additional training
samples. By tackling these challenges in
labeling logic, the goal is to improve the
accuracy and reliability of the defect detection
models, ultimately enhancing the overall
performance of the PID system.

3. Methods

3.1 Overview
The identification and classification of image

defects in the PID system involve a series of
preprocessing steps tailored to the specific
characteristics of each defect type. For instance,
defects such as Blurry/Out-of-Focus and
Partial-Cutoff Image focus primarily on the
carton part of the image, necessitating the use
of a carton detector (extractor) as a
preprocessing step. The procedure for
detecting each defect type is illustrated in
Figure 8.
1) Initial Check: The system first
determines if the image is from the bottom side.
If it is, the image is processed using the Dirty
Bottom Camera prediction model.
2) Brightness Analysis: If the image is
not from the bottom side or does not exhibit a
Dirty Bottom Camera defect, the system
generates a histogram of the image's brightness
distribution. This histogram is used to classify
the image as Reflective/Flash too Bright,
Blacked-out, or non-defective. Note that an
image cannot be classified as both Reflective
and Blacked-out, as these defects are mutually
exclusive in terms of brightness distribution.
3) Object Detection: Images preliminarily
classified as non-defective undergo further
analysis using an object detector model to
extract the carton and carton label areas.
4) Detailed Defect Analysis: For each
carton area extracted, the system applies
specific prediction models to check for Partial
Image defects or Blurry defects. If neither
defect is identified, the image is finally
classified as non-defective.

Figure 8. Designed PID Image Quality Detection Architecture
Based on the definitions of each defect type, the following potential solutions are proposed
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in Table 4:
Table 4. Solution Overview

Defect Type Solutions
Dirty Bottom
Camera CNN-based Classifier

Blurry/Out-of-
Focus

Carton Label Extraction +
CNN-based Classifier

Partial Image Carton Extraction + CNN-
based Classifier

Cut-off Image Carton Extraction + CNN-
based Classifier

Camera Flash
too Bright

1) Brightness-based ML
model

2) Carton Extraction + CNN-
based Classifier

Black Out
Image

1) Brightness-based ML
model

2) CNN-based Classifier
This comprehensive detection architecture
ensures that each defect type is accurately
identified and classified, utilizing the most
appropriate machine learning techniques. The
integration of both traditional and advanced
models, such as Convolutional Neural
Networks (CNNs) [3] and brightness-based
classifiers, enhances the robustness and
precision of our defect detection system.
By systematically addressing the preprocessing
needs and classification criteria for each defect
type, our methodology improves the reliability
of the PID system, ultimately reducing
erroneous chargebacks and enhancing overall
operational efficiency.

3.2 Object Detection Model
To enhance the accuracy of the defect
detection system, an object detection model
was implemented to identify and extract carton
and carton label areas from the images. A
random sample of 1,600 images was selected
from a dataset of 15,000 images, and bounding
box annotation tasks were created using a data
labeling tool. An example of the annotation
output and the expected outcome of the object
detection model are illustrated in Figure 9.
The annotation results are provided in a
dictionary format. Under the key "annotation",
there are three dictionaries with different
"class_id" values. The dictionary with
"class_id: 0" represents the carton area, while
the other two with "class_id: 1" represent the
carton label parts. It is important to note that
the label on the top-right part of the image is

not a carton label, as it lacks a barcode.

Figure 9. Sample Annotating Result and Its
Corresponding Image

Figure 10. Illustration of Object Detection
Outcome

Given that the resolution of images may
change during the modeling step, we need to
scale the bounding box coordinates to maintain
consistency. The original format in the
annotation job is (left, top, width, height),
where (left, top) represents the coordinates of
the upper-left corner of the carton bounding
box. The following transformations are
implemented to convert these coordinates into
a model-ready format, expressed as the ratios
of the upper-left corner �1%, �1% and lower-
right corner �2%, �2% of the image:

�1 =
left
width

,

�1 =
top

height
,

�2 =
left + width

width
,

�2 = top+height
height

(1)
The objective function for a typical object
detection model aims to optimize both
classification loss and regression loss.
1. Classification Loss: The classification loss
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(�cls) measures the error in predicting the class
probabilities of objects. It is often computed
using the Cross Entropy Loss (CE Loss),
which is defined as:
�cls =− � �� log �� � + 1 − �� log 1 − �� �� (2)
where �� is the true probability of class � and �� �
is the predicted probability.
2. Regression Loss: The regression loss (�reg)
measures the error in predicting the
coordinates of the bounding boxes. It is
typically computed using the Smooth L1 Loss
(also known as Huber Loss), which is defined
as:

�reg = � smooth�1 �� − ���� (3)
where �� is the true bounding box coordinate
and ��  � is the predicted bounding box
coordinate. The smooth L1 loss function is
given by:

smooth�1 � = 0.5�2, |�| < 1
|�| − 0.5, ��ℎ������# (4)

The total loss ( � ) for the object detection
model is the sum of the classification loss and
the regression loss:

� = �cls + �reg (5)
There are several object detection models
available for implementation, including R-
CNN based models (R-CNN[4], Fast R-
CNN[5], and Faster R-CNN[5]), YOLO[6],
and SSD. While these models generally
perform similarly in terms of accuracy in
simple contexts (with a small number of
objects in the same background), their
prediction response times vary significantly
due to differences in model architectures.
Given our requirements for real-time defect
detection and the comparative performance
metrics, we selected the Single Shot Multi-Box
Detector (SSD) model for our implementation.
The SSD model provides an optimal balance
between accuracy and computational
efficiency, making it well-suited for
applications requiring quick and reliable defect
detection. Detailed performance comparisons
of the selected models will be presented in
Section 5.

3.3 Defect Prediction Model
To address the various defect types identified
in the PID system, we employed two primary
types of prediction models: deep learning-
based CNN classifiers and traditional machine
learning-based brightness histogram models.
The CNN classifiers were implemented using

both basic and transfer learning approaches to
leverage the advantages of pre-trained models.
3.3.1 The CNN-based classifier
The CNN-based classifier is designed to
automatically identify defects by learning
feature representations from the input images.
We configured the basic CNN classifier with
multiple convolutional layers for feature
extraction and fully connected layers for
classification. In addition, we employed
transfer learning techniques using pre-trained
models such as ResNet18 [7] and VGG16 [8]
to enhance the model's performance. Transfer
learning significantly reduces training time and
improves generalization, especially in
scenarios with limited data.
3.3.2 Brightness-based machine learning
models
Image data is represented as a matrix of
brightness values ranging from 0 to 255, with a
shape of ℎ × � × �, where ℎ is the height, �
is the width, and � is the number of channels.
Each element in this matrix is called a pixel.
For colored images, there are three channels:
red, green, and blue ( � = 3 ), whereas for
grayscale images, there is only one channel
( � = 1 ). Channels function as color planes.
The brightness-based machine learning (ML)
classifier is utilized to detect defects such as
Camera Flash too Bright/Reflective and
Blacked Out Image. We expect the former to
exhibit a large portion of high pixel values (as
255 represents white), and the latter to have a
significant portion of low pixel values (0
represents black). Figure 10 illustrates the
brightness distribution histogram for an image
labeled as Camera Flash too Bright/Reflective
compared to a non-defective one.

Figure 11. Brightness Histogram
Comparison

Figure 11 shows the histograms of brightness
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distribution for reflective, blacked-out, and
non-defective images. The main differences
among these histograms are observed in the
regions of low and high brightness values.

Additionally, brightness values in reflective
and non-defective images are more mixed,
while the distribution for blacked-out images is
highly skewed, as it is shown in Figure 12.

Figure 12. Concatenated Histograms of Brightness Distribution
To build an effective machine learning model,
we need to perform feature engineering to
extract representative features that distinguish
different brightness distributions. We extract
three types of features as shown in Table 5:
1) Histogram Bin Heights
2) Quantile Differences
3) General Statistics

Table 5. Selected Features
Features Type Description

B1,
B2, …,
B15

Histogram
Bin

Heights

The histogram of each
image is set to have 15
bins, and B1~B15

represents the heights of
those bins.

Bin
Entropy

Quantile
Difference Entropy of bin values

IQR Quantile
Difference Q 75% - Q 25%

Lower-
QR

Quantile
Difference Q 25% - Minimum

Upper-
QR

Quantile
Difference Maximum - 75%

Median General
Statistics Q 50%

Q1 General
Statistics Q 25%

Q3 General
Statistics Q 75%

For the brightness-based approach, we
considered several supervised machine
learning models due to the continuous nature
of the features. These models included: (1)
Logistic Regression (Logit-R) [9], (2) Support
Vector Machine (SVM) [10], (3) K-Nearest
Neighbors (KNN) [11], and (4) Naïve Bayes
(NB) [12]. After evaluating the performance of

these models, Gaussian Naïve Bayes was
ultimately selected for its superior performance
in this specific application. Detailed
comparisons of model performance will be
presented in Section 5.

4. Experiments and Results

4.1 Model Evaluation Metrics
In evaluating the performance of the models,
Recall, Precision, and the area under the
Receiver Operating Characteristics curve
(ROC AUC) are utilized as primary metrics
[13]. The ROC AUC is a comprehensive
measure of a model's ability to distinguish
between classes. The following terminologies
are essential for understanding these metrics:
1) True Positive (TP): An image
correctly predicted as defective.
2) True Negative (TN): An image
correctly predicted as non-defective.
3) False Positive (FP): An image
incorrectly predicted as defective.
4) False Negative (FN): An image
incorrectly predicted as non-defective.
The Recall and Precision are defined below:

Recall = TP
TP+FN

(6)

Precision = TP
TP+FP

(7)
The ROC curve plots the true positive rate
(TPR) against the false positive rate (FPR).
The TPR is equivalent to Recall, while the
FPR is defined as:

FPR = FP
FP+TN

(8)
The area under the ROC curve (AUC) provides
a single value to compare classifier
performance. An ideal classifier achieves a
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TPR of 1.0 and an FPR of 0.0, resulting in an
AUC of 1.0. Conversely, random guessing
yields an AUC of 0.5.

4.2 Model Performance
4.2.1 Object detection model
Four object detection models were
implemented and evaluated: R-CNN, Faster R-
CNN, YOLO, and SSD. Table 6 summarizes
their performance metrics, including Mean
Prediction Time (in seconds), Precision, Recall,
and F1-Score.
Table 6. Comparison of Different Object

Detection Models

Model Mean
Pred TimePrecisionRecall F1

R-CNN 1.88 0.86 0.82 0.84
Faster R-CNN 0.127 0.90 0.85 0.93

YOLO 0.041 0.95 0.93 0.95
SSD 0.034 0.96 0.93 0.95

4.2.2 Defect classification model
The performance of the defect classification
models was evaluated based on Recall,
Precision, and ROC AUC. Additionally, the
mean prediction time was considered, as quick
result generation is expected in production.
The final model performances for each defect
type are provided below:
1) Dirty bottom camera:

Table 7. Model Performance for Dirty
Bottom Camera Defect

Basic CNN ResNet18VGG16
Recall 0.69 0.77 0.87

Precision 0.92 0.88 0.77
ROC AUC 0.82 0.85 0.86
Mean Pred

Time 0.26 0.43 0.44

Table 7 indicates the model performance for
dirty bottom camera defect. Recall is
prioritized over Precision, and the VGG16-
based Transfer Learning model demonstrated
the highest ROC AUC. Consequently, the
VGG16 model was selected as the final model
for this defect type. It is worth noting that
some experiments included applying Gaussian
High Pass filters as preprocessing steps to
enhance model performance in predicting
Dirty Bottom Camera defects.
2) Blurry/out-of-focus:

Table 8. Model Performance for
Blurry/Out-of-Focus Defect

Basic CNN ResNet18VGG16
Recall 0.94 0.94 0.95

Precision 0.91 0.92 0.93
ROC AUC 0.93 0.93 0.94
Mean Pred

Time 0.24 0.41 0.43

Table 8 illustrates the model performances for
blurry/out-of-focus defect. The three models
demonstrate similar performance in terms of
Recall, Precision, and ROC AUC. However,
the basic CNN classifier's prediction time is
significantly lower, averaging 0.24 seconds.
Consequently, we selected the basic CNN
model as the final model for this defect type.
3) Partial/cutoff image:
Two separate models were developed for this
defect type: the partial defect model and the
cutoff defect model. These models were
trained with manipulated positive instances
and achieved nearly perfect performance. To
ensure a fair estimation, original images were
used for testing; if either model predicted the
image as defective, it was considered to
contain a Partial/Cutoff defect. The aggregated
model performances are as follows in Table 9:

Table 9. Model Performance for
Partial/Cutoff Defect

Basic CNN ResNet18VGG16
Recall 0.76 0.78 0.75

Precision 0.83 0.84 0.88
ROC AUC 0.80 0.82 0.83
Mean Pred

Time 0.25 0.43 0.42

The ResNet18-based Transfer Learning model
was selected as the final model for the
Partial/Cutoff Image defect due to its superior
performance.
4) Blacked out image:
Given the limited number of images (52)
labeled as containing Blacked Out Image
defects, we employed image manipulation
techniques to generate additional training
samples. Due to the nature of this defect type,
it is relatively easier for models to detect,
resulting in nearly perfect performance, as it is
shown in Table 10. The comparisons are
primarily among the basic CNN classifier and
several classical machine learning models.
Table 10. Model Performance for Blacked

Out Image Defect
Basic
CNN

SVM
(rbf)

Logit
-R KNNGNB

Recall 1.0 1.0 1.0 0.9950.951
Precision 1.0 1.0 1.0 0.9920.971

Mean Pred Time 0.23 0.18 0.03 0.32 0.14
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5) Camera flash too bright/reflective:
The Camera Flash too Bright/Reflective defect
is similar to the Blacked Out Image defect in
that both can be detected using brightness-
based machine learning models and a CNN
classifier. The structures and feature
engineering steps for these two defect types are
identical, with the exception that carton
extraction is applied as a preprocessing step for
the Camera Flash too Bright/Reflective defect.
Table 11. Model Performance for Camera

Flash too Bright/Reflective Defect
Basic
CNN

SVM
(rbf)

Logit-
R KNNGNB

Recall 0.88 0.73 0.79 0.84 0.72
Precision 0.85 0.70 0.81 0.82 0.71
Mean Pred

Time 0.30 0.21 0.07 0.36 0.19

As it is shown in Table 11, unlike the Blacked
Out Image defect, machine learning models do
not perform as well overall for this defect type.
The only model with both Precision and Recall
above 0.8 is the K-Nearest Neighbors (KNN)
classifier; however, its mean response time,
along with Recall and Precision, is inferior to
that of the basic CNN classifier. Therefore, the
basic CNN classifier was selected as the final
model for the Camera Flash too
Bright/Reflective defect.

5. Conclusion and Future Steps
In this project, six models were developed
(two specifically for Partial/Cutoff defects) to
address five key image quality issues identified
in the Parcel Identifier (PID) system. These
models were integrated into a comprehensive
prediction pipeline that sequentially checks for
the five defect types upon receiving a PID
image, returning a list of potential defects. The
implemented models demonstrated strong
performance, achieving ROC AUC scores
above 0.8, indicating high accuracy in defect
detection. However, there is significant
potential for enhancement through more
extensive image preprocessing, model tuning,
and data collection efforts.
This initiative reflects a commitment to
leveraging machine learning approaches to
address image anomaly problems within parcel
identification systems. The successful
deployment of these models can significantly
improve operational efficiency by reducing
erroneous chargebacks and enhancing the
accuracy of the automated receiving process.

Looking ahead, the project scope is expected
to expand to include a wider range of use cases
and business entities. The next phase will
focus on more complex issues, such as one
label covering another and masking essential
information like barcodes. By exploring
advanced solutions for these emerging
challenges, the aim is to further refine the
system and broaden its applicability.
Additionally, future work will involve
continuous improvement of the current models
through advanced techniques in image
preprocessing and feature extraction.
Integrating additional data sources will
enhance the robustness of the models.
Collaborations with other teams and
stakeholders will be crucial in identifying new
defect types and developing innovative
solutions to maintain high standards of image
quality and operational efficiency.
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