
Facial Expression Detection Algorithm Based on YOLOv8

ZhengjunWang
University of Shanghai for Science and Technology, Shanghai, China,

Abstract ： Facial expression detection is
pivotal for the development of affective
computing and human-computer interaction,
but existing algorithms often fall short in
real-time performance, accuracy, and
complexity. This paper presents
YOLOv8CRGD, a lightweight facial
expression detection algorithm based on
YOLOv8. The algorithm features a
lightweight cross-scale feature fusion module
(CCFM) to enhance the model's adaptability
to scale variations and a SENetv2 module to
improve feature representation, thereby
increasing detection accuracy. To address
efficiency in complex visual tasks, an
improved visual Transformer structure with a
dynamic attention mechanism (DAT) is
adopted. Furthermore, GhostConv replaces
traditional convolution operations to achieve
a lightweight model design. Experimental
results show that YOLOv8CRGD achieves a
91.3% accuracy and an mAP50 of 94.4% in
facial expression detection tasks, while
reducing parameters by 15% compared to the
YOLOv8n model. With a frame rate (FPS) of
57.9, the algorithm not only maintains high
detection accuracy but also excels in real-time
performance, making it a compelling
candidate for real-time facial expression
analysis applications.
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1. Introduction
In recent years, with the rapid development of
artificial intelligence and deep learning
technologies, facial expression detection has
found widespread applications in various fields,
including affective computing, human-computer
interaction, intelligent surveillance, and
psychological analysis. As an important form of
non-verbal communication, facial expressions
contain rich emotional and intentional
information. Therefore, accurately and

efficiently recognizing and classifying facial
expressions has become one of the research
hotspots in the field of computer vision.
Currently, facial expression detection algorithms
based on deep learning, especially those utilizing
Convolutional Neural Networks (CNNs), have
significantly improved detection accuracy.
However, despite substantial progress in many
areas, facial expression detection technology
still faces several challenges in practical
applications[1].
First, the real-time performance of facial
expression detection remains a major obstacle to
its widespread application. In real-world
scenarios, facial expression detection typically
involves processing large amounts of video
frame data, which places high demands on
algorithmic computational efficiency. Second,
the accuracy of facial expression detection
algorithms remains inadequate, especially in
detecting expressions in complex backgrounds
and at different scales. Subtle facial expression
changes, individual facial differences, and varied
camera angles all impact model accuracy. In
particular, in cases of expression blurring,
occlusion, and lighting variations, many facial
expression detection models exhibit poor
robustness. Additionally, due to the multi-scale
nature of facial expressions, maintaining
consistent accuracy across different scales
remains challenging, posing higher requirements
for the model's generalization capability.
To address the issues of poor real-time
performance, insufficient accuracy, and high
model complexity in facial expression detection
technology, this paper proposes a lightweight
facial expression detection algorithm based on
YOLOv8, named YOLOv8CRGD, aiming to
achieve higher real-time performance, improved
detection accuracy, and lower computational
costs[2].

2. Model Introduction

2.1 Yolov8
YOLOv8 (You Only Look Once version 8) is the
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latest version of the YOLO series object
detection algorithms. The YOLO series models
are widely used in the field of computer vision
due to their excellent real-time performance and
efficient object detection capabilities. YOLOv8
inherits and expands upon the technical
advantages of YOLOv7 while introducing
optimizations in several aspects, leading to
further improvements in accuracy, inference
speed, and model complexity[3].

2.2 CCFM
The core idea of the lightweight Cross-Scale
Feature Fusion Module (CCFM) is to enhance
the model's ability to detect multi-scale objects
by merging feature maps of different scales. In
CCFM[4], low-level feature maps undergo
convolution operations to further extract features,
while high-level feature maps are upsampled to
match the resolution of the low-level feature

maps. These feature maps are then merged
through concatenation. The upsampling ensures
that the high-level semantic features, while
preserving their global information, are aligned
with the low-level detailed features, resulting in
a feature map that combines both detailed and
global semantic information.
This text utilizes the output features of the last
three stages of the CCFM backbone network as
the input to the encoder. The hybrid encoder
converts multi-scale features into a series of
image features through intra-scale interaction
and inter-scale fusion. Subsequently,
IoU-aware queries are used to select a certain
number of image features from the encoder
output sequence, serving as the initial object
queries for the decoder. Finally, a decoder with
a prediction head iteratively optimizes the
object queries to generate bounding boxes and
confidence scores.

Figure 1. CCFM

2.3 SENetv2
SENetV2 (Squeeze-and-Excitation Networks V2)
is an improved convolutional neural network
module designed to enhance the global
representation capability of neural networks by
introducing a more powerful channel attention
mechanism[5].
The implementation of the SENetv2 model
encompasses critical hyperparameters that
dictate its operational dynamics. The channel
hyperparameter is essential, defining the
number of input feature map channels. This
parameter is pivotal as it directly influences the
input dimensions for subsequent fully
connected layers within the model. The
reduction hyperparameter is set to a default
value of 16, which determines the
dimensionality reduction ratio. This reduction
mechanism is crucial for managing the
computational load and maintaining the
model's efficiency by compressing each
channel's feature to one-sixteenth of its original

dimension before mapping it back to the
original dimension.
The SENetv2 architecture is predicated on the
concept of attention mechanisms to enhance the
network's responsiveness to salient features
while suppressing less relevant ones. The
process begins with a Squeeze operation, where
global average pooling (AdaptiveAvgPool2d) is
applied to condense spatial information of each
channel into a single value, resulting in a
one-dimensional feature vector. This vector is
then subjected to an Excitation operation
through two sequential fully connected layers
(Linear). The initial layer reduces the feature
dimension, followed by a ReLU activation
function, and the subsequent layer maps the
features back to their original dimension, capped
with a Sigmoid activation function to ensure
output weights are bounded between 0 and 1,
representing the importance weights of each
channel.
The Scale operation subsequently applies these
learned channel weights to the original feature
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maps, amplifying the contribution of significant
features and muting the less critical ones. In the
SELayerV2, the concept is extended through the
cardinality hyperparameter, enabling cross-scale
feature integration. The input feature map is
partitioned into multiple groups along the
channel dimension, and the SE operation is
applied independently to each group. The
outcomes are concatenated and further merged
through a final fully connected layer, facilitating
a nuanced feature regulation. This approach
allows SENetv2 to effectively capture and
emphasize useful features at various scales while
suppressing noise and irrelevant information,
thereby enhancing the network's performance
and generalization capabilities.
It primarily involves the following three steps:
2.3.1 Squeeze Operation
In a convolutional neural network, given an
input feature map � ∈ ℝ�×�×� , � is the
height，� is the width，� is the number of
channels, SENetV2 first performs "Global
Average Pooling" (GAP) to reduce the spatial
dimensions. This operation compresses the � ×
� feature map into a 1 × 1 representation,
preserving only the global information for each
channel. The specific formula is:

�� =
1

� × �
�=1

�

 �
�=1

�

 � ����

�� represents the global description of the，����
represents the pixel value of the � th channel in
the input feature map �.Through this operation,
we obtain a channel-level representation � ∈ ℝ�,
where global average pooling condenses the
spatial information of each channel into a
statistical summary.
2.3.2 Excitation Operation
After the squeeze phase, SENetV2 assigns a
weight to each channel based on its global
description. This weight reflects the importance
of the channel in the global context. SENetV2
introduces a fully connected layer to reduce the
number of channels from � to a smaller

dimension �, where � is a reduction ratio. The
expression is as follows:

� = �(�2�(�1�))
�1 ∈ ℝ�×� is the weight matrix of the first
fully connected layer, which reduces the number
of channels from � to �,
�2 ∈ ℝ�×� is the weight matrix of the second
fully connected layer, which restores the number
of channels back to �,
�( ⋅ ) represents the activation function,
introducing non-linearity,
�( ⋅ ) denotes the sigmoid function, which
maps the result to the range [0, 1], representing
the weight of each channel.

Through this process, the model learns the
importance weights s ∈ ℝC

2.3.3 Channel Reweighting
Next, SENetV2 applies the learned channel
weights � to each channel of the input feature
map � , thereby emphasizing important features
and suppressing less important ones. This
operation is performed by multiplying the
weights channel-wise, and the formula is as
follows:

�� � = �� ⋅ ��
Where �� represents the reweighted output of
the �th channel,and �� is the learned weight for
the � th channel.

2.4 DATAttention
DAT (Deformable Attention Transformer) is a
variant of the attention mechanism, primarily
designed to improve the efficiency and
flexibility of traditional Multi-head
Self-Attention (MHSA) by introducing a
deformable attention mechanism. The key
feature of DAT is the use of flexible offsets to
adjust the positions of sampled features,
enabling it to better adapt to the shapes and
positions of different objects. This enhances the
model's ability to handle complex visual tasks.
The network structure of DAT is as follows
Figure 2:

Figure 2. DAT
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The working principle of DAT (Deformable
Attention Transformer) is as follows:
Deformable Attention Module
The core idea of the deformable attention
module is to generate a set of offsets from each
query point and use these offsets to sample
features from the input feature map. Each query
point q corresponds to an initial reference point.
These reference points are uniformly distributed
across the feature map, marking the initial
position of each query point. By learning an
offset θoffset , these reference points are
dynamically adjusted. The offset is learned by
the network through convolution or fully
connected layers. Sampling from the feature
map is then performed based on these adjusted
reference points. The sampling process can be
implemented using techniques such as bilinear
interpolation.
The mathematical expression is:

x' = BilinearInterpolation(x, θoffset(q))
Here, x' represents the sampled feature, x is the
input feature map, and θoffset(q) is the learned
offset.
By combining traditional multi-head
self-attention with deformable attention, DAT
enables more precise capture and localization of
complex objects. This not only enhances the
model’s flexibility in handling variations in
shape and position but also improves
computational efficiency. The introduction of
deformable attention allows DAT to exhibit
greater adaptability and performance in visual
tasks.

2.5 GhostConv
GhostConv is a lightweight convolution
operation designed to reduce redundant
computations in convolutional neural networks.
The basic idea of GhostConv is to generate a
portion of the "base" feature maps using a small
number of convolution operations, and then
produce additional feature maps through simple
linear transformations (such as pointwise
convolutions), forming the final output. This
method avoids the need to compute all feature
maps through traditional convolution operations,
thereby significantly reducing computational
cost.
Assuming the input feature is � , the standard
convolution can be expressed as:

� = � ∗ �
Here, � represents the convolution kernel, and
∗ denotes the convolution operation. For

GhostConv, the process is completed in two
steps:
1. Generate base features:

�1 = � ∗ �1
2. Generate Ghost features:

�2 = �(�1) ∗ �2
Where �( ⋅ ) represents a simple transformation
operation, such as pointwise convolution.
The final output is:

� = [�1, �2]
[�1, �2] denotes the concatenation of the base
features and the Ghost features.

3. Experimental Results and Analysis

3.1 Dataset
The custom dataset utilized in this study
integrates publicly available facial expression
datasets from Kaggle with facial expression
images collected and labeled from the internet.
Special attention was given to data cleaning,
the accuracy of labeling, and the balance of
sample distribution during the construction of
the dataset to ensure its representativeness and
accuracy. To ensure data quality, strict quality
control was applied to all images, excluding
those with low resolution, blurred, or irrelevant
to the research task. Duplicate images were
removed, and image standardization was
performed to reduce biases from different data
sources. The dataset comprises 2,156 facial
expression images, divided into training and
testing sets in a 5:1 ratio. The expressions are
categorized into five classes: happiness,
sadness, surprise, fear, and anger. To ensure a
balanced sample distribution, we performed
oversampling on minority classes and
undersampling on majority classes.
Furthermore, we focused on collecting facial
expression images from individuals of different
ages, genders, and ethnicities to enhance the
diversity and inclusiveness of the dataset.

3.2 Model Training
The hardware and software configuration used
in this paper includes:
- 13th Gen Intel(R) Core(TM) i9-13900HX,
2200 MHz,
- GTX 3090Ti 4GB GPU,
- Windows 11 operating system,
- PyTorch 1.7.1 deep learning framework.

3.3 Evaluation Metrics
The performance of the algorithm is evaluated
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using the following metrics:
- mAP (mean Average Precision): A key metric
for assessing overall model performance in
object detection tasks.
- Precision: The accuracy of the model's
predictions.
- FPS (Frames Per Second): The real-time
performance of the model, indicating how many
frames the model can process per second.
- Params: The total number of trainable
parameters in the model, used to assess the
model's complexity.

Figure 3. Shown
3.3.1 mAP (mean Average Precision)
mAP (mean Average Precision) is a key metric
for evaluating the overall performance of a
model in object detection tasks, assessing the
detection accuracy across all categories.
Precision-Recall Curve: For each category, the
model's detection results are sorted by
confidence scores from high to low, and then
Precision and Recall are calculated.
Precision (P): This indicates the proportion of
true positives among the predicted positive
samples.

P =
TP

TP+FP
Where TP refers to True Positives, and FP refers
to False Positives.
Recall (R): Recall represents the proportion of
actual positive cases that are correctly identified
as positive by the model.

R =
TP

TP+FN
FN is False Negative.
AP (Average Precision): For each category,
based on different confidence thresholds, a
Precision-Recall curve is plotted. AP is the area
under this curve, which can be calculated
through integration:

AP =
0

1
 � P(R) dR

mAP (mean Average Precision): mAP is the
average of the AP values across all categories:

mAP =
1
n

i=1

n

 � APi

n is the number of categories.
3.3.2 Precision (Accuracy)
Precision measures the accuracy of the model's
detection results. It represents the proportion of
true positive samples among the predicted
positive samples.
The formula for calculating precision is:

Precision =
TP

TP+FP
TP: The number of true positive samples
correctly detected by the model.
FP: The number of false positive samples, where
the model incorrectly detects negative samples
as positive.
3.3.3 FPS (Frames Per Second)
FPS is a key indicator of the algorithm's
real-time performance, representing how many
frames the model can process per second.
The calculation method for FPS is:

FPS =
N
T

where N is the number of frames, and T is the
time taken to process these N frames (in
seconds).
3.3.4 Params
Params refers to the total number of trainable
parameters in the model and is used to measure
the model's complexity. A larger number of
parameters typically indicates a more complex
model, requiring more computational resources.
For a convolutional layer, the formula to
calculate the number of parameters is as follows:
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Params = (k × k × Cin × Cout) + Cout
where:
- k × k is the size of the convolution kernel,
- Cin is the number of input channels,
- Coutis the number of output channels,
- Cout is also the number of bias terms (one for
each output channel).
For a fully connected (dense) layer, the formula
to calculate the number of parameters is:

Params = (Nin × Nout) + Nout
where:
- Nin is the number of input neurons,
- Nout is the number of output neurons.
These metrics combined—precision, speed
(FPS), and complexity (Params)—offer a
comprehensive evaluation of the
YOLOv8CRGD model's performance in terms
of accuracy, processing speed, and model
complexity.

3.4 Ablation Study
Table 1. Ablation Study

mAP@0.5/% Precision/% FPS
Yolov8n 89.2 87.4 59.6
+CCFM 94.5 90.3 58.4
+RSNetv2 93.6 90.6 54.5
+Ghostconv 94.1 88.2 58.9
+DATAttention 94.7 91.1 57.6
By conducting ablation experiments on
YOLOv8n, the impact of different modules on
model performance is clearly demonstrated. The
experimental results are shown in the table. The
introduction of the CCFM module increased the
mAP from 89.2% to 94.5%, and Precision
improved from 87.4% to 90.3%. This
improvement in accuracy validates the
effectiveness of the CCFM module, which
enhances detection accuracy, as shown in table
1.
Although the RSNetv2 module also improved
the mAP (from 89.2% to 93.6%), it had a
significant impact on inference speed, reducing
FPS from 59.6 to 54.5. This indicates that while
the RSNetv2 module greatly improves accuracy,
its complexity increases computational costs.
This may be due to the more complex
multi-scale convolution operations performed
during feature extraction, adding computational
overhead.
In contrast, the GhostConv module achieved a
more balanced performance improvement. After
introducing GhostConv, the model's mAP

reached 94.1%, and the number of parameters
decreased from 3.0M to 2.7M, demonstrating
that GhostConv reduces redundant computations
and enhances model efficiency.
The addition of the DATAttention module
significantly improved the performance of the
YOLOv8n model. By effectively enhancing the
model's ability to capture global contextual
information, it greatly boosted detection
performance.

3.5 Comparative Experiments
Table 2. Comparative Experiments

mAP@0.5
/%

Precision/
%

FPS Params
/M

Faster RCNN 82.1 81.4 29.415.0
Yolov5 90.3 86.9 45.32.5
Yolov7 88.7 89.5 48.82.7
SSD 82.9 82.5 25.217.4
CenterNet 90.5 86.1 50.46.4
Yolov8+CBMA91.7 90.2 55.73.1
Yolov8n 89.2 87.4 59.63.0
Yolov8-CRGD 94.4 91.3 57.92.8
In the comparative experiments, several classical
object detection algorithms were
comprehensively compared with the improved
YOLOv8 series, evaluating their performance in
terms of accuracy, speed, and parameter count.
The experimental results highlight the strengths
and weaknesses of different algorithms in
practical applications as shown in table 2.
The Faster RCNN model, as a region
proposal-based object detection method, shows
significantly lower inference speed compared to
other lightweight models. This can be attributed
to the region proposal and feature resampling
steps involved in the detection phase, which
increase computational complexity. Therefore, it
is not well-suited for applications with high
real-time requirements.
For the SSD model, despite its widespread use in
early object detection tasks, the experimental
results show that SSD's mAP and Precision are
lower than those of more modern object
detection models, making it less suitable for
real-time applications in contemporary
scenarios.
The CenterNet model demonstrates a good
balance in performance, falling into a moderate
range. Its center point prediction method reduces
the computational cost compared to traditional
two-stage models while maintaining relatively
good detection accuracy. However, it still lags
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behind the latest versions of the YOLO series in
extreme real-time and high-precision tasks.
Finally, the proposed YOLOv8 series models
achieve an exceptional balance between
accuracy and speed. This shows that with the
introduction of the efficient CRGD module, the
YOLOv8 series not only reaches leading
accuracy levels but also maintains the efficiency
of its lightweight structure, achieving high
detection accuracy and real-time performance.

3.6 Visualization Analysis
Below are samples from the facial expression
detection tests. It can be seen that the model
demonstrates high accuracy in detecting facial
expressions, accurately identifying facial
features and expressions with considerable
precision.

Figure 4. Detection

4. Conclusion
In this paper, we have applied various module
enhancements to the YOLOv8n model and
conducted comparative experiments with several
classical object detection algorithms to explore
the performance of different models and
modules in terms of detection accuracy,
inference speed, and parameter complexity. The
ablation study revealed that the integration of
modules such as the Cross-Scale Feature Fusion
Module (CCFM), SENetv2, GhostConv, and
Dynamic Attention (DAT) significantly
improved the model's mean Average Precision
(mAP) and Precision, with CCFM and DAT
showing the most substantial effects.
The CCFM facilitates the fusion of multi-scale
features, enhancing the model's ability to detect
objects of varying sizes by integrating
information from different spatial resolutions.
This theoretical underpinning is rooted in the
concept that combining features at various scales
can capture both local and global context,
leading to a more comprehensive representation
for object detection tasks.
The SENetv2 module, which employs a
sophisticated channel attention mechanism,
refines feature representation by emphasizing
informative features and suppressing less useful
ones. This is based on the theoretical framework
that not all features contribute equally to the
detection task, and by selectively focusing on
the most salient features, the model can achieve
higher accuracy.
GhostConv, which replaces traditional
convolutions, reduces the computational burden
while maintaining accuracy. This is achieved by
factorizing the convolution operation into a
depthwise convolution followed by a pointwise
convolution, which theoretically allows for a
more efficient use of parameters without
sacrificing detection performance.
The DAT module, based on the Transformer
architecture, introduces a dynamic attention
mechanism that adapts to the complexity of the
visual input, theoretically allowing the model to
focus on the most relevant parts of the input for
detection tasks, thus improving efficiency and
accuracy.
Although some modules marginally affected
inference speed, the overall performance saw
significant improvements. Notably, GhostConv
not only enhanced accuracy but also
substantially reduced the number of parameters,
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making it particularly suitable for scenarios with
limited computational resources.
In comparative experiments, the YOLOv8 series
models outperformed traditional detection
models such as Faster RCNN, SSD, and
CenterNet in both detection accuracy and
real-time performance. The YOLOv8-CRGD
model, while maintaining a small parameter
count, achieved a mAP of 94.4% and a Precision
of over 91%, with an inference speed of 57.9
FPS. This demonstrates that our model achieves
an excellent balance between efficiency and
accuracy, making it a strong candidate for
real-time facial expression analysis applications.
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