
Improving Dense Video Captioning with a Transformer-based
Multimodal Fusion Model

Yixuan Liu, Ziwei Zhou*, Shuyue Hui, Haoyuan Ma, Hongju Li, Zhibo Zhang
School of Computer Science and Software Engineering, University of Science and Technology

Liaoning, Anshan, China
*Corresponding Author

Abstract: Dense Video Captioning (DVC)
plays a pivotal role in advancing video
understanding within computer vision and
natural language processing. Traditional
DVC models have predominantly focused
on visual information, often neglecting the
auditory component. To address this
limitation, we propose a Transformer-based
multimodal fusion model that integrates
audio and visual cues for comprehensive
multimodal input processing. Built on an
encoder-decoder architecture, the model
synergizes audio and visual streams. The
feature encoder combines self-attention
mechanisms with convolutional neural
networks to achieve precise audio feature
encoding, while the decoder employs
multimodal fusion by leveraging intermodal
confidence scores to adaptively integrate
inputs. A feedforward neural network
enhances historical textual representations,
and strategic skip connections eliminate
redundant data, prioritizing key video
features for refined captioning. Extensive
validation on benchmark datasets MSR-
VTT and MSVD demonstrates that our
model outperforms existing methods,
achieving BLEU-4, ROUGE, METEOR,
and CIDEr scores of 0.427, 0.618, 0.294, and
0.532 on MSR-VTT, and 0.539, 0.741, 0.369,
and 0.976 on MSVD. By effectively
leveraging the complementary strengths of
audio and visual data, our model establishes
a new benchmark in DVC, offering precise
and comprehensive video content
interpretation.
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1. Introduction
The rapid advancement of internet

technologies has resulted in an exponential
increase in video data, presenting significant
challenges in the efficient parsing and
comprehension of vast content volumes.
Consequently, automating video content
analysis and description has emerged as a
crucial area of research and technological
development. This trend has heightened
interest in Dense Video Captioning technology,
emphasizing the necessity for enhanced
methods to interpret and manage the
continuously expanding volume of video
content.
Zhou et al. [1] introduced a groundbreaking
approach in this field by employing a
Transformer-based framework to develop an
end-to-end model for dense video description.
This model was notable for its innovative use
of a new masking scheme, which enabled
efficient simultaneous training of the event
detection and description phases. Building on
this work, Wang et al. [2] further advanced the
field by proposing a fully end-to-end
framework with parallel decoding capabilities.
This enhancement aimed to improve task
collaboration and reduce the reliance on
manual parameters during event detection.
Additionally, Wang et al. [3] combined Video
Transformer (ViT) with deep semantic
learning to create a model that optimizes
feature extraction networks like ResNet152
and C3D through deep separable convolution
techniques. This integration was designed to
lower computational overhead and reduce
model complexity in video description tasks.
Iashin et al. [4] emphasized the importance of
multimodal features in videos through their
innovative approach. Their methodology
focused on the comprehensive integration of
features derived from various pre-trained
models to capture video content across visual,
audio, and textual dimensions. Specifically,
they used the I3D convolutional network for
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visual feature extraction, the VGGish network
for audio analysis, and an automatic speech
recognition system to convert speech content
into textual descriptions. This approach led to
the development of a more enriched and
precise framework for enhancing video
comprehension.
Li et al. [5] introduced the innovative MSTVC
model, which employs the R(2+1)D network
for precise visual feature extraction and
utilizes a semantic detector to generate key
semantic information. Additionally, they
integrated audio features and introduced a
multiscale deformable attention mechanism,
complemented by a parallel prediction head
strategy. This combination resulted in a
substantial acceleration of model convergence.
Mun et al. [6] efficiently enhanced the
generation of coherent text descriptions by
implementing a two-tier reward system and
conducting a comprehensive analysis of video
context. In a related study, Chen et al. [7]
introduced a weak supervision technique
focused on multi-instance concept learning to
strengthen the integration of event detection
and description tasks. This approach improves
the model's understanding of inherent video
features by incorporating an induced aggregate
attention mechanism. Additionally, it leverages
identified keywords during feature alignment
to produce more precise text descriptions,
thereby fostering a stronger relationship
between the two tasks.
This paper presents the Transformer-based
Video Feature Model, a novel multimodal
fusion framework for dense video description
that enhances the ability to capture both local
and global dependencies in audio and video
features. Our proposed methodology represents
a significant advancement in improving video
content understanding and description
generation by incorporating a self-attention
mechanism-based feature encoder, a
multimodal fusion decoder, and a feedforward
neural network (FNN) to optimize historical
text features.

2. Related Theorie
Transformer networks[8] have revolutionized
natural language processing (NLP) with their
distinctive architecture, which is centered on
self-attention mechanisms and offers a more
efficient approach to processing sequential
data. Unlike earlier models that relied on

recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks,
Transformers excel in managing long-distance
dependencies by capturing global relationships
within input sequences solely through self-
attention mechanisms.
The Transformer network comprises multi-
head attention mechanisms, positional
encoding, feedforward neural networks, and
layer normalization components at its core.
These elements work synergistically to achieve
exceptional performance across diverse
domains beyond NLP, including computer
vision, speech recognition, and related fields.
Moreover, the Transformer ensures stable
information propagation within deep network
structures, a feature that is critical for
generating precise video descriptions. By
integrating these advanced components, the
Transformer substantially enhances the
efficiency of video description generation
models, underscoring its immense potential in
natural language processing and beyond.

3. Model Design
Dense video description, a subfield of video
parsing, is distinguished by its focus on
extended video durations and diverse content
involving multiple events. The input for such
tasks consists of a sequence of time-ordered
video frames � = �� , ��0, ⋯, � − 1 , while
the output comprises a series of sub �� from
the set sub y, where each sub � =
������, ����, �� , and a sequence of
vocabulary terms �� that form individual
sentences, drawn from the vocabulary library
� and varying in length. TInitially, the model
performs event segmentation to generate a set
of events � = ��

�����, ��
���, ������, ℎ� , with

the ����� denoting the event's rating, and ℎ�
serving as input for subsequent video
description tasks, ultimately producing the
final descriptive text. Due to the inherent
complexity of dense video descriptions,
previous research has often approached these
tasks in two distinct phases. However, this
methodology frequently led to a disconnect
between the generated descriptions and an
over-reliance on the precision of event
segmentation.
In this study, a novel Transformer-based model,
referred to as the Transformer-based Video
Feature Model, is proposed, utilizing an
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encoder-decoder architecture. As illustrated in
Fig. the model employs an attention
mechanism to capture dynamic interactions
among frames, between different events, and

between events and frames within the video.
This approach enables the construction of a
comprehensive set of feature representations
for event queries.

Figure 1. Overall Framework of the Proposed Transformer-based Video Feature Model
Furthermore, the model incorporates two
parallel predictors that simultaneously estimate
the boundaries and descriptions of each event
query. The number of events, denoted as ���� ,
is determined using an event counter
mechanism from a global perspective. During
the output phase, the top ���� events with the

highest confidence levels are selected,
ensuring the coherence and completeness of
the generated narrative.

3.1 Feature Extraction
This article presents a model that integrates
feature extraction from three distinct
modalities: video, audio, and text.

Figure 2. Two-Stream Network Architecture Diagram
(1) Recent research predominantly employs 3D
convolutional neural networks (3D CNNs) or
two-stream networks to extract visual
information from videos, as these methods
have demonstrated remarkable performance in
capturing video features. The 3D CNN
thoroughly analyzes video frames, leveraging
its deep learning architecture to capture rich
spatio-temporal information[10]. Its 3D
convolutional kernel processes not only the
visual content of individual frames but also the
temporal relationships between consecutive
frames.
The two-stream network, illustrated in Fig. 2,
is specifically designed to enhance the
understanding of video behavior. The process
begins by sampling RGB frames at 25 frames

per second and capturing optical flow frames
using the PWC-Net model[16]. The frames are
resized to a minimum side length of 256 pixels,
after which a 244×244 block is cropped from
the center. These pre-processed frames are
subsequently input into the pre-trained C3D
model, which extracts spatio-temporal features
over 2.56-second segments (equivalent to 64
frames) of the original video, generating a
high-dimensional feature vector. This sequence
of operations ensures that the extracted visual
features encapsulate comprehensive spatio-
temporal dynamics and motion information.
(2) Audio Features: Capturing audio features is
critical for constructing the model. Audio
signals can be represented in various domains,
such as time, frequency, and cepstral[11]. with
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the time and frequency domains being
commonly preferred for their practicality.
Once converted into the frequency domain, the
audio signal is input into a neural network
system for advanced feature extraction.
The extraction process begins by separating
the audio signal from the video and resampling
it to a single-channel signal at 16 kHz. To
optimize the model's performance and reduce
audio information loss, pre-emphasis
processing is applied to enhance the signal’s
high-frequency components and balance the
spectrum. The audio signal is then segmented
into approximately stationary small segments
using a Hamming window of 25 ms, with
framing and window function processing
applied at 15 ms steps. Next, the segments
undergo Fourier transformation to convert the
signal into the frequency domain, followed by
conversion into the power spectrum using a
64-stage MEL filter at MEL frequency. The
final output is a 96×64 logarithmic MEL
spectrogram, which is then input into a pre-
trained VGG network for further feature
extraction. Each spectrogram produces a �� -
dimensional feature vector, where �����×�� ,
with �� representing the number of audio
segments in the video.
Neural networks significantly enhance the
system's ability to learn abstract concepts from
audio signals, improving processing efficiency
and accuracy in audio-related tasks.
(3) Neural networks cannot inherently
understand natural language text[13]; thus, text
content must first be converted into word
vectors for computational recognition.

3.2 Encoding Module
This model processes inputs from two
modalities using specialized encoders. When
managing multi-modal inputs, it is crucial to
account for the inherent differences in data
representation across modalities, emphasizing
the necessity of targeted encoding structures.
Utilizing a single encoder for multi-modal
inputs may result in incomplete feature
extraction or the loss of critical information.
The visual feature encoder consists of N
layers[14], where the first layer receives visual
features as input and generates intermediate
representations. Each subsequent layer uses the
output of the previous layer as its input. Each
encoding layer comprises two sub-layers: a
multi-head attention layer and a feedforward

layer. These sub-layers are connected via
residual connections and normalized using
layer normalization, thereby forming the
structure of the visual feature encoder.
The visual feature �� is input into the visual
encoder for visual feature interaction. The
input visual features are denoted as �����×�� ,
where �� visual features and �� represents
their dimensionality. The visual feature
encoder updates the visual features at the sss-th
encoding layer according to the following
process:

��� = ��������� ������(��) (1)
��+1 = ��� + ��� ���������(���) (2)

���(�) = �� ���� ���� �� � (3)
The visual feature encoder integrates multiple
layers, each with distinct components. The
feedforward network layer, denoted as ���( )
performs transformations to extract high-level
features. The dropout layer, ����( ) mitigates
overfitting by randomly deactivating a subset
of neurons during training. The activation
function, ����( ) , introduces non-linear
relationships between neural layers, enabling
the model to capture complex patterns. The
multi-head attention layer, ���������( ) ,
forms the core of the encoder by leveraging
self-attention mechanisms to enhance stability
and robustness in feature representation.
(2) The audio feature encoder combines a
convolutional neural network (CNN) with a
Transformer to capture both local and global
audio features. The Transformer effectively
models global audio context, while the CNN
focuses on local audio details. This hybrid
structure includes a feedforward network layer,
a multi-head attention layer, a convolutional
layer, and a second feedforward network layer.
The multi-head attention layer primarily
enhances the identification of correlations
across various audio segments, facilitating the
capture of overall audio characteristics.
However, it is less effective at modeling
intricate local features. To address this, the
convolutional layer, positioned after the multi-
head attention layer, strengthens the
integration of local and global audio features
by capturing local correlations and effectively
learning localized information.
The convolutional layer reduces
computational costs and the number of
parameters by employing pointwise
convolution and one-dimensional depthwise

36 Journal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 2 No. 4, 2024

http://www.stemmpress.com Copyright @ STEMM Institute Press



convolution, thereby mitigating the risk of
overfitting[12]. This approach effectively
models relationships between audio signals
and enhances the network's expressive
power when integrated with other activation
functions.
The input audio features are defined as
�����×�� ， where �� represents the total
number of audio segments after frame
segmentation, and �� denotes the
dimensionality of each audio feature. At the �-
th encoding layer, the audio feature �� is input
into the multi-head attention mechanism to
model global dependencies within the audio
data. The specific process is as follows:

��� = ��� �� + ��������� ��� �� , ��� �� , ��� �� (4)

��� �� = �� +
1
2 ��� ��

(5)

Subsequently, the modeled audio features are
processed through the convolutional layer to
capture local information, resulting in the final
output of encoded audio features.
���� = ��� + ���� ��� (6)

��+1 = ��������� ����

+
1
2

��� ����

(7)

where ����( ) represents the convolutional
layer.
Using the confidence scoring system, the
relative weight and significance of each modal
feature in the text generation task are
effectively measured and compared. This
module introduces a confidence threshold
mechanism, which functions as an advanced
filter to accurately identify and select critical
modal features essential for the current text
generation task. By targeting and retaining
these key features, information from other
modal features is utilized to iteratively
optimize the less significant ones. This process
achieves a complementary integration of
information across modalities, enhancing the
model’s capacity to flexibly utilize multimodal
contextual information while effectively
addressing the problem of audiovisual
redundancy.
After the feature fusion step, the integrated key
features are passed into the gating layer. The
algorithm calculates the scale factor for each
modal feature, analyzing and quantifying its
detailed impact on the final text generation.
This ensures that reasonable weights are

assigned to different modal features in the text
generation task. The implementation details
are outlined in Equations (8) through (10).

(1 )s s sG V A      (8)

 Sigmoid FC VA     (9)

( )s s sVA G FNN G  (10)
Finally, the integrated features are passed into
a fully connected layer, where a softmax
function is applied to compute the probability
distribution for the next word in the generated
text. The specific calculation is detailed in
Equation (11).

 Softmax ( )P f FNN VA (11)

To address potential interference caused by
historical text features, the decoding side
introduces two parallel processing paths: a
redundant discard path and an information
enhancement path. This structure highlights
features relevant to the current context while
minimizing the influence of historical
information.

4. Experiment and Analysis
Author names and affiliations are to be
centered beneath the title and printed in Times
New Roman 11-point, non-boldface type. (See
example below)

4.1 Dataset
In the video description task, although there
are multiple thematic datasets, such as those
related to film or food, this study focuses on
two widely used general datasets: Microsoft
Video Description (MSVD)[13] and Microsoft
Research-Video to Text (MSR-VTT)[20]. An
overview of the specific information on these
two datasets is provided below.
The MSVD dataset includes an average of
41 individual statements per video, while
the MSR-VTT dataset has 20 individual
statements per video.

Table 1. Dataset Details
Data
set

Total
Videos

Average
Duration

Common
divisions

Total
Vocabulary

Unique
Words

MSVD 1970 10sec 1200/100/670 607399 13010
MSR-VTT 10000 20sec 6513/497/2900 1856523 29316

4.2 Sample Data Preprocessing
The audio data was divided into 0.96-
second segments and organized in a time
series. A Hamming window function was
applied with a window length of 25 ms and
a sliding interval of 15 ms. Each segment
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was processed with the window function,
followed by a Fourier transform to convert
it into the frequency domain. Subsequently,
a MEL filter generated the spectrogram, and
the pre-trained VGG network embedded the
audio features into a 128-dimensional
vector space.
We sampled frames from the video data at a
rate of 25 frames per second. The visual
features of the video were extracted using
the trained C3D network, with a down-
sampling ratio of 4, resulting in each time
step consisting of four frames. This
produced a 1024-dimensional visual feature
representation, where each feature
encapsulates 2.56 seconds of information
from the original video. For the text data,
we used the pre-trained GloVe model to
map each word into a vocabulary space with
10,172 dimensions, resulting in a 10,172-
dimensional word vector for each word.
This provides the foundation for subsequent
processing and analysis of the text
information.

4.3 Model Training
The experimental environment is based on a
64-bit Ubuntu 22.04 LTS operating system.
The central processing unit is an Intel Pentium
G4060 running at 3.50 GHz, with 16 GB of
physical memory and 16 GB of virtual
memory. The graphics card used is an RTX
3060 Ultra OC model. All experiments were
conducted using the PyTorch framework.
During the feature extraction stage, we set a
batch size of 16 and directly processed the
uncropped visual and audio features. To ensure
consistent input feature dimensions, the visual
and audio features were extended to lengths of
300 and 800, respectively, adequately covering
all feature lengths in the training set..
The batch size in the text generation module is
32, and it processes visual and audio features
extracted from event video segments based on
the reference time period. To maintain a
consistent sequence length for different modal
features within the same batch, each modal
feature is padded to match the longest
sequence length in the batch. Various modal
features, each possibly having distinct
dimensions, are standardized into a 1024-
dimensional internal space for computational
purposes. Each multi-head attention layer
consists of 4 layers (� ) and 4 subspace heads

( � ). The confidence threshold ( � ) for the
audio-visual attention layer in the multimodal
fusion decoding module is set at 0.15.
To enhance rapid convergence and prevent
overfitting during training, the model
parameters are optimized using the Adam
optimizer. Weight decay is employed to
manage model complexity, with a decay rate
of 0.0001. The learning rate is set to 0.00001,
the total number of iterations is 70, and the
dropout rate is 0.2. Early stopping is triggered
to terminate the training if there is no
improvement in text generation on the
validation set for 30 consecutive epochs..
In our experiments on the MSR-VTT dataset,
we compared the performance of the Baseline
model and the audio-visual fusion model using
the CIDEr evaluation metric, as depicted in Fig.
3. The analysis shows that the fusion model
exhibits superior performance by effectively
combining visual and audio features. Visual
features convey information about scenes,
objects, and actions, while audio features
enhance the environmental and contextual
aspects of sound. By integrating these two
modalities, the model's semantic parsing
ability is significantly improved, leading to a
richer and more accurate understanding.

Figure 3. Comparison of Changes in CIDEr
Indicators

4.4 Comparative Experiment and Analysis
To assess the model's performance, various
encoder-decoder structural models were
selected for comparison using the MSVD and
MSR-VTT datasets. The detailed results are
presented in Tables 2 and 3.
Table 2. Comparative Results of Different

Methods on MSVD Dataset
MODEL B_4 ROUGE METEOR CIDER
TTA 0.517 0.718 0.337 0.876

CSA-SR 0.525 0.723 0.356 0.835
POS-CG 0.517 0.703 0.341 0.918
SAAT 0.467 0.693 0.321 0.81
RMN 0.542 0.732 0.367 0.942
SGN 0.528 0.736 0.355 0.943
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STG-KD 0.52 0.734 0.369 0.920
Our method 0.539 0.741 0.369 0.976
Table 3. Comparative Results of Different

Methods on MSR-VTT Dataset
MODEL B_4 ROUGE METEOR CIDER
TTA 0.413 0.617 0.276 0.465

CSA-SR 0.414 0.619 0.283 0.497
POS-CG 0.413 0.617 0.284 0.476
SAAT 0.405 0.607 0.281 0.477
RMN 0.417 0.61 0.283 0.487
SGN 0.413 0.608 0.287 0.487

STG-KD 0.401 0.609 0.287 0.467
Our method 0.427 0.618 0.294 0.532
The data in Table 2 demonstrates that this
model performs better than other models on
multiple performance indicators in the
MSVD dataset. In the CIDEr index, the
model showed a notable 3.5% enhancement.
The CIDEr index, designed for assessing
descriptive texts, closely aligns with human
evaluation criteria, demonstrating the
superiority of this model. This confirms that
incorporating attention mechanisms and
guidance signals can greatly improve the
model's performance.
The model also showed improvements in
performance across all evaluation indicators on
the MSR-VTT dataset, as presented in Table 3.
The BLEU_4 score rose by 3.39%, while the
ROUGE score increased by 1.64%, the
METEOR score by 0.7%, and the CIDEr score
significantly by 9.24%. The significant rise in
the CIDEr score highlights the strong
performance of fusion networks and contextual
semantic capture models with attention
mechanisms in generating descriptions.

4.4 Experimental Results
At the conclusion of the experiment, two
videos were randomly selected from the test
set to assess the model's effectiveness, as
depicted in Fig 4 and Fig 5.

Figure 4. Experimental Results (a)

Figure 5. Experimental Results (b)
By analyzing the experimental data above,
it is evident that the model accurately aligns
the subject, target object, and action in the
sentence. These experimental results further
confirm that integrating attention

mechanisms and guidance signals
significantly enhances the model's ability to
maintain semantic consistency. The model
effectively indicates the number of subjects
participating in the activity, such as "five
people" and "eleven ducks."

5. Conclusion
This chapter introduces a dense video
description method that utilizes multimodal
fusion. A Transformer encoder, enhanced
by convolutional techniques, is employed to
effectively model the local and global
dependencies of audio features. An audio-
visual attention module is proposed for
feature fusion. Additionally, the feature
representation of historical text is enhanced
through the use of a feedforward neural
network (FNN). Skip connections are
integrated to construct a redundant discard
path and an information enhancement path,
leveraging subtraction and addition
operations for this purpose. Building upon
the Transformer model, the inclusion of a
mechanism to select historical information
enhances the diversity of feedforward
processes, making it more suitable for
applications in video description, video
search, and retrieval. By effectively
utilizing historical text features, the model
places greater emphasis on the current input
information, ultimately improving its
generalization ability. Ablation experiments
were conducted to assess the impact of
these methods on the model's performance.
The model was then compared with existing
mainstream models using classical datasets,
conclusively demonstrating its effectiveness.
The model's impact on video description is
also visually demonstrated.
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