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Abstract: Regarding the issue of redundant
transformer features affecting feature
extraction and fault detection. This article
proposes a transformer fault diagnosis
method based on Kernel Principal
Component Analysis (KPCA) and Seagull
Algorithm optimized Least Squares Support
Vector Machine (LSSVM). Firstly, the
transformer fault data is preprocessed using
KPCA to reduce the correlation between
features and remove redundant feature
components, in order to improve the
accuracy of the final fault diagnosis.
Secondly, in response to the problem of the
influence of LSSVM parameter settings on
the fault classification of the model, it is
proposed to use the seagull algorithm to
optimize and determine the parameters of
the LSSVM model. Finally, the LSSVM
model optimized by the seagull algorithm is
used for final fault diagnosis, and the
experimental results are compared with
other models. The fault diagnosis accuracy
of the proposed method in this paper is
96.33%, which is higher than several other
comparison methods, verifying the
effectiveness of the proposed method.

Keywords: KPCA; Seagull Algorithm;
LSSVM; Transformer; Fault Diagnosis

1. Introduction
With the rapid development of China's
economy, the electricity load has been
increasing year by year in recent years. As the
core equipment of the power system,
transformers play a significant role in ensuring
the smooth operation of the power grid. Due to
the increasing electricity consumption,
transformers sometimes work in overload
environments for a long time, which can cause
minor faults. If not detected and dealt with in a
timely manner, it will cause serious faults in

transformers and threaten the safety of the
power grid [1]. Therefore, fault diagnosis of
power transformers can timely detect potential
hazards and is of great significance for early
maintenance [2-5].
When a transformer malfunctions, it usually
produces a series of dissolved characteristic
gases. Traditional methods generally use
dissolved gas analysis (DGA) in oil to
diagnose faults in transformers [6]. With the
application and development of intelligent
optimization algorithms, current research
mainly focuses on transformer diagnostic
models. The research on fault diagnosis
models includes two types of machine learning
models: SVM and neural networks [7-10].
Neural network-based fault diagnosis models
typically have high non-linear fitting and
adaptive capabilities, but they require more
training samples to improve their fault
diagnosis accuracy and are not suitable for
small sample fault datasets [11]. Support
Vector Machines (SVM) and their improved
forms are more suitable for small sample
situations and have higher diagnostic accuracy.
The selection of SVM parameters has a
significant impact on subsequent model fault
classification, which is still a complex problem
worth studying [12,13].
Based on this, this article proposes a
transformer fault classification method
optimized by KPCA and Seagull algorithm for
LSSVM. In response to the problem of
excessive dimensionality of transformer fault
feature data affecting fault diagnosis, the
KPCA method is used to screen features,
eliminate features that have a negative effect
on fault classification, and use the KPCA
processed features as training samples for the
LSSVM model. Optimize the key parameters
of LSSVM using the seagull algorithm to
obtain the optimal diagnostic recognition
model. Using the optimized LSSVM model
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based on the seagull algorithm for fault
classification and recognition.

2. Kernel Principal Component Analysis
KPCA transforms the input spatial data �� into
a high-dimensional space � using a nonlinear
kernel function; Then, principal component
analysis is performed in high-dimensional
space � to obtain feature information and main
features, avoiding the decrease in recognition
accuracy caused by feature similarity [14]. The
steps are as follows:
(1) Map the original fault data of the
transformer to a high-dimensional feature
space � , forming high-dimensional fault data
�(��) with� = 1,2, ⋯, �.
(2) �=1

� �(��)� = 0, the covariance matrix � of
high-dimensional fault data is as follows:

� = 1
� �=1

� �(��)��(��)� (1)
(3) Let the kernel function �∗ = ���, and the
fault characteristic information be the
eigenvectors and eigenvalues of solving �∗ .
By performing PCA on �, we can obtain:

�∗� = �� (2)
Where, � is the fault characteristic value, and �
is the fault characteristic vector corresponding
to the characteristic value.
(4) Assuming the cumulative contribution rate
of each fault feature of the transformer is 90%,
the top � fault feature values �� and
corresponding feature vectors �� that meet the
contribution rate standard can be sorted in
descending order to obtain the following
equation:

�=1
� ���

�=1
� ���

≥ 90% (3)

(5) When the cumulative contribution rate of
transformer fault characteristics is not less than
the set value, the nonlinear sample � after
dimension reduction mapping is the set of
principal components of the obtained features:

� = [ �=1
� ���(��)� ]� (4)

3. Seagull Algorithm
The Seagull Algorithm is an optimization
algorithm developed by learning the foraging
process of seagulls [15]. Seagulls fly in various
directions during foraging, moving towards the
optimal flight direction and following a spiral
flight pattern to hunt. It mainly includes
migration behavior and foraging attack
behavior.

3.1 Migration Behavior
(1) To avoid collisions between seagulls, the
new position of seagulls can be adjusted by
adding variable A, which can be expressed as:

��(�) = ���(�) (5)
� = �� − (� ��

�
) (6)

Where, ��(�) is the current location of the
seagull, and ��(�) is the new location where
the seagull interacts with other seagulls during
flight. The value of �� is taken as 2, where �
represents the changing motion behavior of
seagulls within a limited search range, and its
value linearly decays from �� to 0. � is the
current iteration count, and � is the maximum
iteration count.
(2) After determining the optimal position of
the seagull, the seagull in flight will move in
the direction of the optimal position, which can
be expressed as:

�����(�) = �[�����(�) − ��(�)] (7)
Where, ����� represents the optimal position
direction of the seagull population, �����
describes the optimal position of seagull
movement, and � is a random variable.
(3) The seagull moves quickly and approaches
the optimal seagull position, which can be
expressed as:

��(�) = ���(�) − �����(�) (8)
Where, ��(�) represents the new position of
the seagull after meeting the above conditions,
and ���(�) represents the latest position of the
seagull.

3.2 Foraging Attack Behavior
After finding prey, seagulls constantly change
their attack angle and use their flight speed to
generate inertia to rush into the water for
hunting. Usually, seagulls use spiral flight
motion, which can be expressed as:

��(�) = ��(�)��� + �����(�) (9)
Where, �� is the optimal individual position
after updating the position of the seagull, �� is
the new position of the seagull individual after
moving, �, �, � are the position coordinates of
the seagull in three-dimensional space when
attacking prey in a spiral state.

4. Least Squares Support Vector Machine
LSSVM is used as a classifier model for
transformer fault diagnosis. Assuming a
training dataset ��, �� on an input space,
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where �� ∈ �� is the input data and �� is the
category. The model is shown below:

���
�,�,�

�1(�, �, �) = 1
2
��� + �

2 �=1
� ��

2�

�. �. ��[���(��) + �] = 1 − ��, � = 1,2, ⋯, �
(10)

Where, �� is the i-th sample error, �(��) is a
nonlinear function that maps �� to a high-
dimensional feature space, and � is the penalty
factor. Optimize the loss function using the
least squares linear criterion. Further solve the
Lagrange multipliers and kernel matrices to
improve convergence accuracy and solving
speed. The final regression function of
LSSVM is as follows:

�(�) = �=1
� ���(��, ��) + ��

�(��, ��) = ��� − ��−��
2

2�2
(11)

Where, the kernel function � and the penalty
factor � are two key parameters of LSSVM,
which directly affect the classification results
of LSSVM. Therefore, this article uses the
seagull algorithm to optimize and determine
the key parameters of LSSVM.

5. Optimizing the Transformer Fault
Diagnosis Process of LSSVM Based on
Seagull Algorithm
Step 1: Data preprocessing. Initialize the
parameters of the Seagull Algorithm and
classify the DGA data obtained by numbering.
Step 2: Extract feature data. Use kernel
principal component analysis to classify DGA
data and obtain a new dataset as the next step
of fault diagnosis experiment data.
Step 3: Use the Seagull Algorithm to
adaptively optimize and determine the two key
parameters of LSSVM.
Step 4: Use the parameter optimized LSSVM
for transformer fault diagnosis.
Step 5: Conduct experimental analysis and
draw conclusions.

6. Experiment and Result Analysis
To demonstrate the accuracy and precision of
the above fault diagnosis methods, a total of
640 sets of transformer fault datasets are
collected based on the reference literature. This
dataset mainly includes: low-energy discharge,
medium low temperature overheating, high
temperature overheating, normal state, high-
energy discharge, and partial discharge. The
corresponding numbers are used as the output
values for transformer fault classification

diagnosis, and the fault types are encoded
accordingly. Select 1800 sets of data as the
sample set, of which 1200 sets are used to
optimize model training and 600 sets are used
for model performance testing. The
classification of the experimental dataset is
shown in Table 1.
Table 1. Classification of Experimental Data

Number Fault type Training
set

Test
set

1 Normal 200 100
2 High-energy discharge 200 100
3 Low energy discharge 200 100
4 Partial discharge 200 100

5 High temperature
overheating 200 100

6 Medium low temperature
overheating 200 100

Firstly, feature screening is performed on the
fault data using KPCA method, and the results
are shown in Figure 1.

Figure 1. KPCA Feature Screening Results
According to Figure 1, the cumulative
contribution rate of principal components 1-5
exceeds 90%. Therefore, this paper selects the
vectors corresponding to the first 5
components as inputs. Select a new dataset for
KPCA dimensionality reduction to train and
diagnose the model. By comparing with DGA
data and PCA dimensionality reduction data,
the effectiveness and high accuracy of KPCA
data in fault diagnosis are verified, and the
fault classification models are all LSSVM
models. The accuracy of fault recognition for
the three feature processing methods is shown
in Table 2.
Table 2. Fault Recognition Results of Three

Feature Processing Methods

Fault Type DGA
(%)

PCA
(%)

KPCA
(%)

Normal 89 91 98
High energy discharge 75 81 90
Low energy discharge 74 78 91
Partial discharge 81 83 89
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High temperature
overheating 79 87 95

Medium low temperature
overheating 78 82 92

Comprehensive accuracy
rate 79.33 83.67 92.5

According to Table 2, the KPCA method has a
fault diagnosis accuracy of 98% for normal
states, 90% for high-energy discharges, 91%
for low-energy discharges, 89% for partial
discharges, 95% for high temperature
overheating, and 92% for medium and low
temperature overheating, all of which are
higher than the other two methods. The
comprehensive accuracy using DGA method is
79.33%, the accuracy using PCA method is
83.67%, and the accuracy using KPCA method
is 92.5%.
In order to verify the progressiveness of the
proposed seagull algorithm to optimize the
LSSVM model, it is compared with the GWO-
LSSVM method and the WOA-LSSVM
method, and the results are shown in the
following table.

Table 3. Fault Diagnosis Accuracy of
Different Optimization Methods

Fault Type GWO
(%)

WOA
(%)

Seagull
algorithm

(%)
Normal 99 98 100

High energy discharge 95 93 95
Low energy discharge 93 96 96
Partial discharge 92 95 94
High temperature

overheating 96 96 97

Medium low
temperature
overheating

93 92 96

Comprehensive
accuracy rate 94.67 95 96.33

According to Table 3, the accuracy of the
Seagull algorithm in diagnosing faults under
normal conditions is 100%. Both the Seagull
algorithm and GWO have an accuracy of 95%
in diagnosing faults under high-energy
discharge. The Seagull algorithm and WOA
have an accuracy of 96% in diagnosing faults
under low-energy discharge. The WOA
algorithm has an accuracy of 95% in
diagnosing faults under partial discharge, the
Seagull algorithm has an accuracy of 97% in
diagnosing faults under high temperature and
overheating, and the Seagull algorithm has an

accuracy of 96% in diagnosing faults under
medium and low temperature and overheating.
From the above results, it can be seen that the
accuracy of the method proposed in this paper
for diagnosing different types of faults is only
slightly lower for partial discharge than the
WOA algorithm, but the Seagull algorithm has
the highest accuracy for other types of faults.
Moreover, the comprehensive fault diagnosis
accuracy of the method proposed in this paper
is 96.33, which is significantly higher than the
other two methods.

7. Conclusion
In response to the low accuracy of transformer
fault identification and the interference of
redundant features on the identification process,
this paper applies KPCA method, Seagull
algorithm, and LSSVM method to transformer
fault identification. Firstly, KPCA is used to
select fault characteristics. Secondly, the
seagull algorithm is used to adaptively
optimize and determine the parameters of
LSSVM. Finally, the LSSVM model with
optimized parameters is used for fault type
recognition. The experimental results show
that the KPCA method has higher accuracy
compared to using DGA data and PCA
dimensionality reduction data. The accuracy of
fault diagnosis using Seagull Optimization
Algorithm to optimize LSSVM parameters is
higher than that of GWO-LSSVM and WOA-
LSSVM methods, indicating that the proposed
method has high diagnostic accuracy for
different types of transformer faults.
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