
A Study of the Computation Amount and Computation Time of
Classical Deep Neural Networks

Yihui Cheng, Baiyi Liu
School of Information Engineering and Business Administration, Guangdong Nanhua Vocational

College of Industry and Commerce, Guangzhou, Guangdong, China

Abstract: Deep convolutional neural
networks have made great progress in a
variety of computer vision tasks. With the
gradual improvement of its performance, the
layers of neural networks become deeper, and
the training-validation time and
computational complexity increase
dramatically. How to find the relationship
between characteristics of deep neural
networks and their training-validation time is
of great significance for accelerating
convolutional neural networks. This paper
analyzes the computation of several classical
deep convolutional neural networks (DNNs)
proposed in the field of image recognition,
and compares the computation with the total
time of actual training and verification. It is
found that the computation of a deep neural
network is not linearly related to running
time of training and verification.

Keywords: Deep Neural Network; Image
Classification; Computation; CNN;
Computational Complexity

1. Introduction
In 1959, Hubel and Wiesellt[1] was found that
animal visual cortex cells were able to respond
to bright stimuli in the receptive field. Inspired
by this, Fukushima proposed a model of visual
cognitive mechanisms called the New Cognitive
Machine in 1980[2], which is combined with
biological vision theory to arrive at a neural
network model.
At the end of the 1980s, the maturity of
backpropagation algorithms provided key
support for the practical application of CNNs[3].
LeCun et al combine backpropagation
algorithms with convolution operations[4]. It was
proposed that LetNet-5 network can be well
used for handwritten number classification tasks.
This model achieves an accuracy rate of more
than 99% in the handwritten digit recognition
task of bank checks, which verifies the

effectiveness of CNN in real-world scenarios for
the first time. LetNet-5 network includes
convolution layers, pooling layers and full
connection layers. The size of the parameters is
only about 60,000. The role of convolution is to
model the local structure of the features of the
previous layer, whereas the role of pooling is to
spatially merge similar and adjacent features.
The input data at different locations share all the
convolution kernels, and each convolution
kernel corresponds to a feature map, so the
number of feature maps is the same as the
number of convolution kernels. The pooling
operation only retains the maximum value of
each local block in the feature map, which gives
the model some translational invariance. The
convolution and pooling operations are followed
by multiple fully joined operations in order to
fuse the extracted data feature map to obtain the
final result.
After LeNet-5 was proposed, in the decades,
CNN research has fallen into a slump. Since the
beginning of the 21st century, with the rise of
big data and high-performance computing, the
difficulty of CNN training has been gradually
solved. The most influential work was AlexNet,
designed by Alex Krizhevsky et al. in 2012[5],
won the ILSVRC. AlexNet introduced the ReLU
activation function to solve the vanishing
gradient problem and applied Dropout to prevent
overfitting. In addition, AlexNet used GPU
parallel training for the first time to break
through the computing bottleneck of the CPU
and augment the dataset. These improvements
once again validated the potential of deep CNN.
The success of AlexNet had sparked an upsurge
of exploration of deep CNNs in the academic
and industry community and then more CNN
network with a deeper network structure were
proposed. In 2014, VGGNet constructs a deeper
network (16-19 layers) by stacking small-size
convolutional kernels (3×3), which proves the
effect of network depth on the improvement of
feature expression ability[6].

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025 141

Copyright @ STEMM Institute Press http://www.stemmpress.com



However, as the number of layers increases, the
problems of gradient vanishing and training
instability become more and more significant. In
2015, ResNet solved this problem by
introducing residual connections[7]. The residual
structure allows the gradient to bypass some
layers and directly backpropagate, making it
possible for the network to break through a
thousand-layer depth for the first time.
Subsequently, GoogleNet[8] proposed the
Inception module, which improved the
efficiency of feature extraction through multi-
scale convolutional kernel parallel computation,
and used 1×1 convolutional dimensionality
reduction to control the sum of parameter
quantities and allow gradients to be directly
transmitted back to the shallow layer.
CNN initially focused on image classification,
but its application has penetrated into many
fields. In computer vision, object detection and
image generation, both rely on CNNs as feature
extractors. In the medical field, CNN is used for
tasks such as breast cancer pathological section
analysis and lung CT module detection[9]. In
autonomous driving, CNN processes camera and
lidar data in real time to complete lane line
recognition, pedestrian detection, and path
planning[10].
By increasing the depth of the network, CNNs
can approximate arbitrarily complex nonlinear
mappings from input data to output. At the same
time, the deep network structure significantly
reduces the computational efficiency of the
model and makes it very difficult to train. CNNs
are also moving towards lightweighting,
explainability, and integration with other models.

2. Compression and Acceleration of CNNs
CNNs have become one of the core models in
the field of deep learning due to their excellent
performance in computer vision tasks. However,
with the increasing complexity of the model, for
example, the number of parameters of VGG-16
is as high as 138 million[6]. Its huge storage
requirements and computing costs seriously
restrict its practical application in mobile
terminals, embedded devices, and scenarios with
high real-time requirements. This contradiction
has given rise to a research boom in model
compression and acceleration technology. The
goal is to significantly reduce the size,
computational complexity and dependence on
hardware resources of the model through various
means such as algorithm optimization, structural

reconstruction and hardware adaptation. On the
premise of maintaining the accuracy of the
model as much as possible, the implementation
of technology was promoted in resource-
constrained environments.

2.1 The Technical Methods of Compression
and Acceleration
The core idea of model compression and
acceleration is to eliminate redundant
information in neural networks. This redundancy
can exist at multiple levels, such as parameters,
computational structures, or data representations.
At present, the mainstream compression
techniques include pruning, quantization,
knowledge distillation, low-rank approximation,
and compact architecture design, while the
acceleration methods cover two directions:
structural optimization and hardware adaptation.
Pruning techniques enable model lightweighting
by removing redundant weights or structures
from the network. Unstructured pruning filters
on a single weight, such as sorting pruning based
on the absolute value of the weight[11]. However,
due to its sparsity, it is difficult to be effectively
used by hardware, and the actual acceleration
effect is limited. In contrast, structured pruning
is done on a filter or channel basis, or the
LASSO regression is used to iteratively select
the optimal subset[12]. However, the challenge of
pruning is how to balance precision with
compression. Excessive pruning may lead to a
sharp drop in model performance, and layer-by-
layer pruning requires repeated fine-tuning,
increasing training costs. In recent years,
automated pruning frameworks e.g., AMC have
dynamically adjusted pruning rates through
reinforcement learning[12], which significantly
reduces the complexity of manual parameter
tuning.
At the heart of the quantization technique is the
conversion of floating-point weights and
activation values to low-bit integers, which
reduces memory footprint and accelerates
computation. For example, 8-bit quantization
can reduce the size of the model to 1/4 of the
original size, while achieving a 3x increase in
inference speed on hardware that supports fixed-
point operations, such as FPGAs[13].
Quantization is divided into Post-training
Quantization and Quantization Perception
Training (QAT). The former directly transforms
the pre-trained model, which is suitable for rapid
deployment but sensitive to accuracy loss. The

142 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



latter simulates the quantization error during
training and optimizes the weight distribution
through backpropagation, thus maintaining
higher accuracy at low bits. Extreme
quantization, such as a 1-bit binary network, can
greatly compress the model[14], but this results in
a significant drop in precision, so it is often
necessary to dynamically allocate the bit widths
of different layers in conjunction with a mixed-
precision strategy. For example, ResNet-50
achieves a 2.7x speedup with a 1.2% loss of
accuracy by mixing 4/8-bit quantization[15].
Knowledge distillation transfers knowledge
from a large teacher model to a small student
model through transfer learning. Traditional
distillation methods focus on the probability
distribution of the output layer[16], while the
advanced method introduces the matching of
intermediate feature maps, such as the activation
map that uses the attention mechanism to align
the teacher and student models[17]. For example,
TinyBERT compresses the number of
parameters of the BERT model from 110 million
to 14 million through multi-layer feature
distillation, improves the inference speed by 9.4
times, and maintains 92% of the original
performance in the GLUE benchmark task[18].
However, the effect of knowledge distillation is
highly dependent on the quality of the teacher
model, and the training process needs to load
both large and small models at the same time,
which has high requirements for computing
resources.
Low-rank decomposition is based on the theory
of matrix factorization, which disassembles the
high-dimensional convolution kernel into the
product of multiple low-dimensional matrices[19],
which can be approximated as the product of
two small matrices, reducing the number of
parameters. Although low-rank decomposition
can effectively compress the model theoretically,
it has poor adaptability to nonlinear activation
functions such as ReLU and may introduce large
reconstruction errors after decomposition. As a
result, this method is often used in combination
with other techniques, such as quantification, to
compensate for the limitations of a single
method.
The compact network design enables efficient
computation at the model architecture level. For
example, the MobileNet series uses Depth-wise
Separable Convolution, which splits the standard
convolution into two steps: channel-by-channel
convolution and 1x1 point convolution, reducing

the amount of computation[20]. ShuffleNet breaks
the information isolation of group convolution
through channel shuffle, which further reduces
the computational cost while ensuring
accuracy[21]. This type of design often requires a
combination of a large amount of experimental
and domain knowledge, and the emergence of
neural architecture search (NAS) provides a new
way of thinking about the automated design of
efficient models. For example, EfficientNet
achieves a significant increase in accuracy with
the same compute budget by using a composite
scaling strategy that adjusts depth, width, and
resolution simultaneously.

2.2 Acceleration Strategy and Hardware Co-
Optimization
On the basis of algorithm optimization,
hardware adaptation has become the key to
accelerated inference. Structural optimization
includes methods such as cascaded pruning and
dynamic calculation path selection. For example,
the inference latency of ResNet-50 can be
reduced by 15% by removing redundant residual
connections or branching structures. Mixed-
precision quantization dynamically allocates the
number of bits according to the sensitivity of
each layer to the quantization error. For example,
8-bit quantization is used for the underlying
feature map, while 16-bit precision is reserved
for the classification layer, so as to balance
speed and accuracy overall.
Hardware acceleration relies on the extreme use
of computing resources. GPUs accelerate
convolution operations through parallel
computing, while TPU is customized optimized
for matrix multiplication. On mobile, the ARM
NEON instruction set accelerates 8-bit integer
operations with framework-level optimization
and implement real-time inference on the device
side. The dedicated AI chip, Google Edge TPU,
further unleashes the potential of quantization
and pruning through hardware-algorithm co-
design. For example, deploying a 4-bit quantized
MobileNet-V2 on an FPGA can achieve
inference speeds up to 20 times faster than CPUs
while reducing power consumption to 1/10.

3. The Amount of Computation of the Neural
Network
Besides the accuracy of a model, the spatial
complexity and temporal complexity of the
model also need to be considered to evaluate the
performance of deep neural networks. The

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025 143

Copyright @ STEMM Institute Press http://www.stemmpress.com



spatial complexity corresponds to the amount of
the parameter, the time complexity corresponds
to the amount of computation. This study only
focus on the amount of computation.
The amount of computation can be measured by
two performance indicators, i.e. floating-point
operations (FLOPs) and multiply–accumulate
operations(MACs)[21]. One MAC has one
multiplication operation and one addition
operation. Since addition can be performed in
parallel, here we only consider the number of
multiplications and ignore addition. FLOPs
include addition, subtraction, multiplication etc.
FLOPs can be approximated by multiplying
MACs by 2.
K is the size of the convolution kernel, ���� is
the number of output channels, ��� is the number
of input channels, ���� is the width of the
output feature map, ���� is the height of the
output feature map, and � is the number of
groupings of the group convolution.
(1) For the fully connected layer, its MAC
is calculated as follows:

���� = ������� (1)
(2) For a traditional convolutional layer, its
MAC is calculated as follows:

���� = ������������2���� (2)
(3) For a group convolutional layer, its
MAC is calculated as follows:

���� =
������������2����

�
(3)

(4) For a deeply separable convolutional
layer, its MAC is calculated as follows:

���� = ���������2���� (4)
According to the above calculation methods, the
FLOPs of the five common neural network
models are summarized in Table 1.

Table 1. FLOPs of Five Common Neural
Network Models

model FLOPs (G)
Alex 1.42

VGG16 30.94
Googlenet 3.02
ResNet18 3.64
DenseNet 15.7

4. Experiments

4.1 Experimental Environment
All experiments were run on a workstation
equipped with an Intel Core Processor Core(TM)
i7-13700K @3.40 GHz, 96G DDR5 RAM,
NVIDIA GeForce RTX 4080. The operating

system is Windows 11 Professional Edition, and
the software runtime environment is Python 3.9,
Pytorch 2.1.0, and cuda12.2.

4.2 Datasets
FashionMNIST was used in this experimental
which has a total of 70,000 images, including
10,000 test images and 60,000 training images.
Each image is a 28x28 grayscale image. It
covers 10 different categories of products.

4.3 Experimental Data
Five common classical neural networks were
used in the experiment: AlexNet, VGG,
GoogleNet, ResNet, and DenseNet. During
training, all parameters of several models,
including num_epochs, batch_size, and lr
parameters, are the same. The total duration of
training and validation is recorded. Table 2
shows the total duration of the actual training
verification of the five classical neural networks.

Table 2. Running Time
model Running time(s)
Alex 230.77

VGG16 454.72
GoogleNet 587.38
ResNet18 522.82
DenseNet 571.19

4.4 Experimental Result
As shown in Figure 1, the running time and
FLOPs are compared in the experiment. We can
see from Figure 1, for the same computing
platform, the same dataset, and the same
hyperparameter settings, the total time of
training and validation does not increase linearly
with the increase of FLOPs.

Figure 1. Running Time and FLOPs

5. Conclusions
The more computationally intensive a neural
network, the longer the total time spent on
training and validation. What is the minimum
amount of computation required for a neural
network for a particular task? This question is
worthy of further research and exploration.

144 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



Acknowledgments
This paper is supported by Qingyuan City
Industry-Education Integration Social
Science Special Project. Project Name (No.
ZJCYJY202451): Research on the cultivation
of employment ability and industry
adaptation for students in Qingyuan
Vocational College under the background of
industry education integration - taking
information technology majors as an example.

References
[1] Hubel, D.H. and Wiesel, T.N., 1962.

Receptive fields, binocular interaction and
functional architecture in the cat's visual
cortex. The Journal of physiology, 160(1),
p.106.

[2] Fukushima, K., 1980. Neocognitron: A self-
organizing neural network model for a
mechanism of pattern recognition unaffected
by shift in position. Biological cybernetics,
36(4), pp.193-202.

[3] Rumelhart, D.E., Hinton, G.E. and Williams,
R.J., 1986. Learning representations by
back-propagating errors. nature, 323(6088),
pp.533-536.

[4] LeCun, Y., Bottou, L., Bengio, Y. and
Haffner, P., 1998. Gradient-based learning
applied to document recognition.
Proceedings of the IEEE, 86(11), pp.2278-
2324.

[5] Krizhevsky, A., Sutskever, I. and Hinton,
G.E., 2012. Imagenet classification with
deep convolutional neural networks.
Advances in neural information processing
systems, 25.

[6] Simonyan, K., and A. Zisserman. “Very
Deep Convolutional Networks for Large-
Scale Image Recognition.” 3rd International
Conference on Learning Representations
(ICLR 2015), Computational and Biological
Learning Society, 2015, pp. 1–14.

[7] He, K., Zhang, X., Ren, S. and Sun, J., 2016.
Deep residual learning for image recognition.
In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp.
770-778).

[8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P.,
Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A., 2015.
Going deeper with convolutions. In
Proceedings of the IEEE conference on
computer vision and pattern recognition (pp.

1-9).
[9] Esteva, A., Kuprel, B., Novoa, R.A., Ko, J.,

Swetter, S.M., Blau, H.M. and Thrun, S.,
2017. Dermatologist-level classification of
skin cancer with deep neural networks.
nature, 542(7639), pp.115-118.

[10]Bojarski, M., Del Testa, D., Dworakowski,
D., Firner, B., Flepp, B., Goyal, P., Jackel,
L.D., Monfort, M., Muller, U., Zhang, J. and
Zhang, X., 2016. End to end learning for
self-driving cars. arXiv preprint
arXiv:1604.07316.

[11]Han, S., Mao, H. and Dally, W.J., 2015.
Deep compression: Compressing deep
neural networks with pruning, trained
quantization and huffman coding. arXiv
preprint arXiv:1510.00149.

[12]He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J.
and Han, S., 2018. Amc: Automl for model
compression and acceleration on mobile
devices. In Proceedings of the European
conference on computer vision (ECCV) (pp.
784-800).

[13]Jacob, B., Kligys, S., Chen, B., Zhu, M.,
Tang, M., Howard, A., Adam, H. and
Kalenichenko, D., 2018. Quantization and
training of neural networks for efficient
integer-arithmetic-only inference. In
Proceedings of the IEEE conference on
computer vision and pattern recognition (pp.
2704-2713).

[14]Rastegari, M., Ordonez, V., Redmon, J. and
Farhadi, A., 2016, September. Xnor-net:
Imagenet classification using binary
convolutional neural networks. In European
conference on computer vision (pp. 525-
542). Cham: Springer International
Publishing.

[15]Wu, B., Wang, Y., Zhang, P., Tian, Y.,
Vajda, P. and Keutzer, K., 2018. Mixed
precision quantization of convnets via
differentiable neural architecture search.
arXiv preprint arXiv:1812.00090.

[16]Hinton, G., Vinyals, O. and Dean, J., 2015.
Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

[17]Zagoruyko, S., 2018. Weight
parameterizations in deep neural networks
(Doctoral dissertation, Université Paris-Est).

[18]Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen,
X., Li, L., Wang, F. and Liu, Q., 2019.
Tinybert: Distilling bert for natural language
understanding. arXiv preprint
arXiv:1909.10351.

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025 145

Copyright @ STEMM Institute Press http://www.stemmpress.com



[19]Denton, E.L., Zaremba, W., Bruna, J.,
LeCun, Y. and Fergus, R., 2014. Exploiting
linear structure within convolutional
networks for efficient evaluation. Advances
in neural information processing systems, 27.

[20]Howard, A.G., Zhu, M., Chen, B.,
Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M. and Adam, H., 2017.
Mobilenets: Efficient convolutional neural

networks for mobile vision applications.
arXiv preprint arXiv:1704.04861.

[21]Zhang, X., Zhou, X., Lin, M. and Sun, J.,
2018. Shufflenet: An extremely efficient
convolutional neural network for mobile
devices. In Proceedings of the IEEE
conference on computer vision and pattern
recognition (pp. 6848-6856).

146 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press




