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Abstract: By integrating physics-informed
neural network (PINN) techniques with
domain decomposition method, a deep
domain decomposition method is presented
for solving elliptic variational inequality
problems. Based on the Ritz variation
method, the elliptic variational inequality
problem is firstly reformulated as an
optimization problem, and then the
subproblem in each subdomain is solved by
using the Ritz-PINN method, which the
parameters in the network are updated by
the Adam optimizer, and the
residual-adaptive training by introducing a
residual-adaptive dataset update strategy to
gradually guide the model to learn more
complex regions. Additionally, the impact of
overlapping regions on the performance of
the new algorithm is explored. Numerical
results demonstrate the effectiveness of the
proposed algorithm, the mean square error
can be reached O (1.0e-07), and the number
of iterations is independent of grid length h
under uniform overlap conditions.
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1. Introduction
Compared to traditional numerical
optimization methods, the PINN model offers
advantages such as high computational
efficiency, low data requirements, and strong
capabilities in handling nonlinearity and
uncertainty. Currently, deep neural networks
have achieved remarkable success in solving
partial differential equations (PDEs). Weinan E
[1] and colleagues employed deep learning
techniques to handle general high-dimensional
parabolic PDEs by approximating the gradient
of the unknown solution using neural networks.

Sirignano and Spiliopoulos [2] used deep
approximations to solve high-dimensional
PDEs by training neural networks to satisfy
differential operators, initial conditions, and
boundary conditions. M. Raissi [3] and
collaborators introduced physics-based neural
networks, incorporating both continuous-time
and discrete-time models based on the
distribution and arrangement of available data.
Long [4] and colleagues used large multi-layer
convolutional deep networks to learn PDEs
from data.
The domain decomposition algorithm is a
technique that divides complex problems into
several simpler subproblems. In the integration
of machine learning with domain
decomposition, Kopaničáková [5] and
colleagues constructed a nonlinear
preconditioner using the Schwarz domain
decomposition framework, hierarchically
decomposing network parameters to provide
more accurate solutions for underlying PDEs.
[6] proposed a deep domain decomposition
method for PDEs based on variational
principles. [7] applied the deep domain
decomposition method to solve elliptic
problems, and numerical examples
demonstrated that the iteration count is
independent of the network architecture and
decreases as the overlap size increases. [8]
designed D3M with a hierarchical neural
network framework for optimization problems.
By decomposing the PDE system into
component parts, the method independently
constructs local neural networks within
physical subdomains, enabling efficient neural
network approximations for complex problems.
[9] roposed a Fourier-feature-based deep
domain decomposition method (F-D3M) for
PDEs, which applying overlapping domain
decomposition to simplify high-frequency
modes into relatively low-frequency ones. In
each local subdomain, a Multi-Fourier Feature
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Network (MFFNet) was constructed, where
effective boundary and interface treatments
were applied to the corresponding loss
functions. A key limitation of PINNs is lack of
accuracy and efficiency when PINNs solves
the larger domains and complex multi-scale
problems, [10] proposed a finite-basis
physics-informed neural network (FBPINN)
with Schwarz domain decomposition method
to accelerate the learning process of PINNs
and to improve their accuracy. [11] formulated
a general algorithmic framework for
hp-variational physics-informed neural
networks (hp-VPINN) by combining nonlinear
approximations from shallow and deep neural
networks with hp refinement through domain
decomposition and projection into high-order
polynomial spaces, effectively optimizing
network parameters. [12] extended the
optimized Schwarz domain decomposition
method to unstructured grid problems,
utilizing graph convolutional neural networks
(GCNNs) and unsupervised learning to learn
optimal modifications of subdomain interfaces.
By improving the loss function, they achieved
strong performance on arbitrarily large
problems, with computational costs scaling
linearly with problem size. The performance of
the learned linear solver was compared with
traditional and optimized domain
decomposition algorithms for both structured
and unstructured grid problems. [13] used
neural network-enhanced operator
compensation in the deep Ritz method to
ensure accurate flux transmission across
subregion interfaces, and presented a novel
learning algorithm for a more generalized
non-overlapping domain decomposition
method under overfitting interface conditions.
For variational inequality problems, there are
many efficient numerical methods [14-16].
Because the PINN model can embed constraint
conditions and objective functions into the
neural network, in recent years, machine
learning methods based on Physics-Informed
Neural Networks (PINNs) have provided new
methods for solving variational inequality
problems, such as neural-network model for
monotone linear asymmetric variational
inequalities[17], global exponential stability of
neural networks[18], general projection neural
network[19], novel neural network for
variational inequalities with linear and
nonlinear constraints [20] , and so on.

Although the deep domain decomposition
method has achieved significant success in
solving partial differential equation (PDE)
problems, there has been limited research on
combining the PINN model with domain
decomposition methods to address variational
inequality problems. Therefore, in this paper
we a deep domain decomposition method to
solve elliptic variational inequality problems.
The structure of this paper is as follows:
Section 2 presents the deep domain
decomposition method, Section 3
demonstrates the effectiveness of the method
through numerical experiments, and Section 4
gives a summarize.

2 Deep Domain Decomposition Method
Based on Improved PINNs

2.1 Variational Inequality Problems
Consider the following elliptic variational
inequality problem: find u ∈ V = v ∈
H0

1 Ω , v ≥ 0 a. e. Ω such that:
� ∈ � �(�, � − �) ≥ �(� − �) (1)

where
�(�, �) =

Ω
 � ∇� ⋅ ∇� + ��� �Ω，
� ∈ �2 Ω (2)

And Ω is a convex domain.
By applying the Ritz variational method, we
obtain the following equivalent minimization
functional problem: Find u ∈ V such that:

� � = ��� � � ，� ∈ �, (3)
where

� � = 1
2

� �, � − � � (4)
It is easy to see that � ·, · is a continuous,
symmetric, and coercive bilinear functional on
�, and � :�→� is a continuous linear
functional.

2.2 Deep Domain Decomposition Method
(Deep DDM)
We divide the domain Ω into N subdomains,
with the corresponding subproblems
formulated as:

� ��, �� − �� ≥ �(�� − ��), in Ω�, � = 1,2, …, �
ℬ(��) = ��, on ∂Ω ∖ Γ�,
�(��) = �(��), on Γ�

�� ≥ 0

(5)

Here, Γ� represents the artificial boundary
between the subdomain Ω� and other
subdomains, while � denotes the artificial
operator.
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Let hn x; θn , (6)
1N and un represent the solution for each
subdomain, and let θ_n be the network
parameters corresponding to the subproblem.
Then,the optimal functional problem for each
subdomain can be formulated as:

�∗ = argmin� ℳ�(�; ��)， (7)
where

ℳ�(�; ��) = �1ℳΩ�(�; ���) +
�2ℳ∂Ω�∖Γ�

(�; ���) + �3ℳΓ�(�; �Γ�) +
�4�+ � , (8)

ℳΩ�(�; ���): & 1
��� �=1

���
 � � ℎ� ���

� ; � , ���
� −

�(���
� ) 2, (9)

ℳ∂Ω�∖Γ�
(�; ���): & 1

��� �=1

���
 � ℬ ℎ�(���

� ; �) −

�(���
� ) 2

(10)
ℳΓ�(�; �Γ�): & =

1
�Γ� �=1

�Γ�
 � � ℎ�(�Γ�

� ; �) − � ℎ�(�Γ�
� ; �) 2,

(11)

�+ � ≔ 1
�n �=1

��
��� −u ��

� ; � , 0� , (12)

Her ���: = {���
� }�=1

��� , ���: =

{���
� }�=1

���and�Γ�: = {�Γ�
� }�=1

�Γ� represent the
interior points, local boundary points, and

interface points of the nth subdomain,
respectively. �� = {��� , ��� , �Γ�} denotes the
training dataset used for each subdomain. We
denote ��: = � ℎ�(�Γ�; �) as the
information that would be transported to the
objective subproblem labelled by s from the
Neighboring subproblems labelled by r.
We construct a corresponding
Physics-Informed Neural Network (PINN)
within each subdomain for training. During the
training process, firstly we need to minimize
the loss function ℳ� �; �� through
updating the parameters in the network. We
choose to use the Adam optimizer (Adaptive
Moment Estimation). Secondly, we introduce a
residual-adaptive dataset update strategy. In
the residual-adaptive training process, the
model dynamically focuses on areas with
larger residuals (prediction errors).
Additionally, as training progresses, points in
the dataset can be dynamically adjusted,
gradually guiding the model to learn more
complex regions. With this strategy, the model
can more efficiently capture the important
features in the problem, thereby improving the
overall training effectiveness and solution
accuracy.
In summary, we present the following
Algorithm 1.

Algorithm1: Improved PINNs Method
Initialize:
1. define the Physics-Informed Neural Network(PINN) structure
2. Divide the domain into n subdomains Ω n
2. weights �1, �2, �3 for loss function components
3. construct loss function ⟵Variational Inequality with domain decomposition
4. Adam optimizer parameters �
5. Bayesian optimization setup �1, �2, �3, �4
6. Randomly sample training data points (�, �) from the domain Ω
While (����ℎ):
1. Train PINN using the Adam optimizer and data points

- Compute loss = �1ℳΩ� + �2ℳ∂Ω�∖Γ�
+ �3ℳΓ� + �4�+,

Where:
Region Interior Loss:

��� � = 1
���

�=1
��� ℒ ℎ� ���

� , � − � ���
� 2

�

Variational Inequality Constraint Loss:
�+ � = 1

���
�=1
��� max� { − � ���

� , � , 0}

Boundary Condition:

�∂��\��
� =

1
��� �=1

���

� ℎ� ���
� , � − � ���

�
2

�

Subdomain Interface Matching Loss:
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��� � = 1
��� �=1

��� � ℎ� ���
� , � − � ℎ�� ���

� , �
2

� `

- Update network parameters using Adam optimization steps
2. Optimize the loss weights �1, �2, �3, �4 using Bayesian Optimization

- Fit surrogate model to observed losses
- Propose new weights �1, �2, �3, �4 by maximizing acquisition function
- Updata dataset for Bayesian Optimization

3. Update training dataset (under the condition that it is satisfied).
4.Evaluate stopping criteria(max epoch or loss tolerance)
end while
return: �(�, �), which is an approximate solution constructed by Deep PINNs
Next, we present a domain decomposition
algorithm incorporating PINNs. This
algorithm divides the computational domain
into multiple subdomains, where each

subdomain independently trains a PINN to
approximate the solution while exchanging
information at interfaces.

Algorithm 2: Deep DDM
1. Construct ��;
2. Initial PINN parameters ��

0 and interface information ��
0 along ��;

3. for � = 1,2, … do →Start DDM iteration
4. Set ��

�,0 : =: =: = ��
�−1;

5. for � = 1,2, … do →Start PINNs training iteration
6. Set ��

�,� : =: =: = ��
�,�−1;

7. Rearrange randomly training data {��
�}�=1

�� ;
8. for � = 1,2, …, �� do →Update on minibatch
9. Compule PINN loss LPINN

10. Update ��
�,� via Adam

11. End for
12. If L���� ��

�,�; �� − ℳ� ��
�,�−�; �� / ����� ��

�,�; �� < ���L then
13. BREAK;
14. end if
15. end for
16. Set ��

� : =: =: = ��
�,�;

17. Interchange the interface information：��
� ← �� �Γ� ;

18. If ��
� − ��

�−1 /∥ ��
� ∥< ����, ∀� then

19. STOP;
20. If ℎ� ��; ��

� − ℎ� ��; ��
�−1 /∥ ℎ� ��; ��

� ∥< ����, ∀� then
21. STOP;
22. end if
23. end for

3. Numerical Examples
In this section, the network architecture is
designed with 32 units in each layer. We chose
ReLU as the activation function and used the
Adam optimizer with stochastic gradient
descent to update the network parameters in
PINNs.
Besides, the iteration count for each
subdomain is set to 1k. The learning rate is
adjusted based on different conditions, with a
default setting of 0.001. The initial training

data is randomly generated following a normal
distribution, and the dataset is updated after
each iteration. The initial weights are set to
104.
Additionally, the computational setup includes
a CPU with 192 cores running at a frequency
of 1130.5 MHz, along with an RTX 4090D
(24GB) graphics processor, which facilitates
the high-performance training and
optimization processes.
Example 1 Consider the following inequality
problem:

Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025 97

Copyright @ STEMM Institute Press http://www.stemmpress.com



− ��� − ��� ≥ 2�2����������, (�, �) ∈ � = ( − 1,1) × ( − 1,1)
� ≥ 0,

�( − ��� − ��� − 2�2����������) = 0.
� = 0, �� ��

(12)

By applying Green's formula transformation
and introducing the functional J (u) , the
variational inequality problem is converted
minimization problem.

min �(�) = 1
2 0

1
 �

0

1
 � (��)2 + (��)2 ���� −

0

1
 �

0

1
 � 2�2sin  �� sin  �� ⋅ ����� (13)

Suppose h is the level of refinement，δ is the
size of the overlap area. Let Ω1 = ( − 1, δ/
2) × ( − 1,1) and Ω2 = ( − δ/2,1) × ( −
1,1)，The termination condition is set as the
difference between the two iterative solutions
in sequence is less than ε=10-4.
The numerical results of Algorithm 2 (Deep
DDM) are shown in Table 1 and Table 2.

Table 1. Iteration Number of Deep DDM
δ\h 0.05 0.02 0.01 0.005 0.002 0.001
h 78 86 87 88 115 136
2h 97 55 57 60 94 113
0.1 90 78 70 83 92 105
0.2 107 98 85 97 74 89

From Table 1, numerical analysis shows that
the number of iterations increases with
decreasing refinement h for the small overlap
case (i.e., the h-overlap case and the
2h-overlap case), provided that the overlap
domain � is the same; In the consistent
overlap case (i.e., the � = 0.1 and � = 0.2
cases), the number of iterations is independent
of the degree of refinement h. The number of

iterations is the same for all cases.
With the same degree of refinement h, the
number of iterations is independent of the
overlap domain � for the small overlap case
(i.e., the h-overlap case and the 2h-overlap
case), and independent of the overlap domain
� for the consistent overlap case (i.e., the
�=0.1 and �=0.2 cases).

Table 2. Iteration Time of Deep DDM
δ/h 0.05 0.02 0.01 0.005 0.002 0.001
h 1382 1526 1558 1368 1923 2113
2h 1227 1132 1141 1134 1623 2156
0.1 1158 1585 2170 1012 1784 2005
0.2 1833 1690 1079 1248 1488 1543
From Table 2, with the same overlap domain
�, in the small overlap case (i.e., h-overlap and
2h-overlap cases), the iteration time increases
with the decrease of the refinement degree h.
In the consistent overlap case (i.e., �=0.1 and
�=0.2 cases), the iteration time is not related to
the refinement degree h.
With the same degree of refinement h, in the

small overlap case (i.e., the h-overlap case and
the 2h-overlap case), the iteration time is
independent of the overlap domain � ; in the
consistent overlap case (i.e., the � =0.1 and
� =0.2 cases), the iteration time is also
independent of the overlap domain �.
The approximate solution of the model is as
follows.

Figure 1. Numerical Solution Figure 2. Analytical Solution

98 Journal of Big Data and Computing (ISSN: 2959-0590) Vol. 3 No. 1, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



Figure 1 shows the numerical solution
computed by DRPINN, Figure 2 shows the
analytical solution of the problem. It can be
seen that the output of the model is very close

to the analytical solution of the original
problem, indicating that the training of the
model was successful. Next, we plot the 3D
error and 2D error to check the error in detail.

Figure 3. Error 3d Map Figure 4. Error 2D Map
As can be seen from Figure 3 and Figure 4,
although the errors show some fluctuations,
this indicates that there is still room for
improvement in the fitting ability of the model

in some areas, and overall the errors are small,
indicating that the predictive performance of
the model is good.

Figure 5. Subdomain-BasedAbsolute Error
Figure 5 shows the absolute error distribution
between the numerical and analytical solutions,
where the computational region is split using
the subdomain decomposition method x =−
δ/2 and x = δ/2 , with the subdomain
boundaries marked by black dashed lines. The
error in the left region (x＜ − δ/2 ) is in red,
and the error in the right region（x＞δ/2) is in
blue. It can be seen that the left subdomain has
larger errors, mainly concentrated in the lower
region, while the right subdomain has smaller
and more evenly distributed errors, indicating
that domain decomposition affects the error
distribution and convergence characteristics.
Specific calculated data for the detailed
assessment indicators are shown in Table 3.
Table 3. Evaluation Metrics

MSE MAE REL2 Max Error
1.4901e-07 31015e-04 6.0813e-07 9.5493e-04
MSE stands for Mean Squared Error as
followings,

MAE = 1
n i=1

n
 � |yi − yi�| (14)

�AE stands for Mean Absolute Error,

MSE = 1
n i=1

n
 � (yi − yi�)2 (15)

Rel. L2 Error stands for Relative L2 Norm
Error which is defined as,
RelativeL2NormError = ∥y−y∥2

∥y∥2
(16)

Max error is defined by the infinity norm as:
MaxError = max

i
 |yi| (17)

Here, � represents the number of samples, ��
denotes the actual observations, and ���
represents the corresponding predicted values.
Table 3 shows that the deep domain
decomposition method has less error, and the
MSE reaches 1.4901e-07.

4. Conclusion
In this paper, combining physics-informed
neural network with domain decomposition
method, a novel deep domain decomposition
method is constructed to solve the elliptic
variational inequality problem. Firstly, the
computational domain is divided into multiple
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subdomains, then each subproblem
independently trains a PINN to approximate
the solution while exchanging information at
interfaces. The subproblem in each sub-region
is solved by using the Deep-Ritz PINN model,
which the parameters in the physics-informed
neural network are obtained by using adaptive
moment estimation, and the areas with larger
residuals can be dynamically adjusted to make
the model to learn more complex regions and
improving the overall training effectiveness
and solution accuracy. Numerical examples
show that, the new method has less mean
square error and is independent of grid step
length h.
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