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Abstract: Because of the great difference in
word order between different languages in
machine translation, the translation model
has the problem of wrong translation.
Translation models with the same target
language and different source languages learn
different word order information, resulting in
different translation quality. Therefore, this
paper proposes a multilingual neural machine
translation model with multiple languages at
the source and one language at the target.
Multiple languages with different word
orders participate in the model training at the
same time, so that the model can learn
multiple word order information of sentences
with the same meaning. First, 170,000
Russian-Uzbek-Uyghur-English-Chinese
parallel corpus is constructed. On this basis,
different source languages are added with
specified language tags by using the method
of adding language tags, and then mixed as a
new data set to train a multilingual
translation model. In addition, four
multilingual neural machine translation
models, stacking, parallel, fusion and
sublayer fusion, are realized by modifying the
Transformer model method. The
experimental results show that the method of
adding language tags can partially improve
the performance of bilingual translation, and
the quality of translation can be further
improved after the source language is
rewritten with Latin letters; The modified
four Multilingual models can improve the
quality of translation models.

Keywords: Multilingual Neural Machine
Translation Model; Multilingual Parallel
Corpus; Linguistic Markup; Improved Model

1. Introduction
Li et al. [1] proposed the PreAlign framework
for multilingual machine translation, which

innovatively focuses on enhancing cross-lingual
transfer through pre-training alignment. This
framework has demonstrated exceptional
performance in handling translation tasks from
multiple source languages to a single target
language, providing novel concepts and
implementation methods for the many-to-one
multilingual machine translation paradigm. It
allows for the simultaneous use of source
statements in various languages to
collaboratively contribute to the translation into
the target language.
Typically, many-to-one multilingual machine
translation models rely on multilingual parallel
corpora. These corpora consist of datasets where
the same sentences are paired with their
translations in various languages. The PreAlign
framework, in contrast to traditional models,
enhances the pre-training stage through explicit
multilingual alignment. It first establishes a
semantic alignment space during the
initialization phase by incorporating cross-
lingual word translation tables (such as those
generated by GPT-4). Then, during the training
process, it integrates contrastive learning and
language modeling for joint optimization while
preserving alignment relationships through an
improved code-switching strategy.
There are numerous practical applications for
many-to-one multilingual translation models.
For instance, on multilingual websites, while
some content has been translated by human
translators into a parallel corpus of multiple
languages, further translation into additional
languages is often necessary. The PreAlign-
based many-to-one multilingual translation
model can efficiently manage this task. Another
application is in the context of parliamentary
proceedings. Since these proceedings are
frequently available in multiple languages, the
PreAlign-enabled many-to-one model can
translate them into various languages,
facilitating improved information dissemination
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and understanding among diverse language-
speaking audiences.
Each language possesses distinct characteristics,
including variations in word order and
grammatical structures, which can lead to
numerous ambiguities during the machine
translation process. While machine learning
techniques can effectively address language
ambiguity issues through training on extensive
corpora, challenges arise due to the limited
availability of large corpora for specific
languages. Additionally, the construction of
large corpora is often hindered by constraints
related to human resources and time. so
leveraging multiple low-resource languages can
enhance the accuracy of the translation model,
particularly in instances where resources are
scarce.
The existing methodologies for many-to-one
multilingual multi-source machine translation
have been achieved through enhancements in
translation models, fusion models, and data
fusion processes. Knowledge distillation was
suggested by Liang et al. [2] as a substitute for
the conventional approach of directly
concatenating source language data in
multilingual machine translation. By transferring
information, this method improves the model's
performance and solves some of the problems
that come with basic data concatenation. In order
to improve performance while using fewer
resources, knowledge distillation entails teaching
a smaller model (the student) to learn from a
bigger, more complex model (the teacher).
Nevertheless, if the number of languages used
for training increases, this approach may result
in longer sentences and a larger datasets. As a
result, the training data may grow excessively
lengthy, thereby impairing the translation
model's quality. In order to tackle this challenge,
the research advocates for the implementation of
linguistic markup that employs specific language
labels corresponding to various languages. These
labels are integrated into the training datasets,
facilitating the development of a novel training
set that eliminates the necessity for sentence
concatenation, thereby enhancing the processing
of multilingual inputs. According to the method
they found, Merullo et al. [3] demonstrate that
performance on translation tasks can be greatly
enhanced by adjusting the internal model
representations and model weights. This method
greatly enhances its ability to comprehend
numerous source languages by displaying

attention for individual instances and examining
the relationship between attention and syntax
across a huge corpus. This methodology not only
expands the encoder but also modifies the
internal architecture of the decoder; however, the
source code for the improved many-to-one
translation model remains unpublished. As a
result, the present study seeks to replicate the
code to implement three many-to-one
multilingual translation models, namely,
superposition, parallelism, and fusion-based on
the specifications outlined in their research.
Drawing inspiration from the fusion model, this
investigation introduces an innovative many-to-
one multilingual translation model referred to as
the sub-layer fusion model. In light of the
limited availability of multilingual parallel
corpora, this research undertakes the manual
construction of a datasets consisting of 170,000
parallel sentences in Russian, Uzbek, Uighur,
English, and Chinese for the purpose of many-
to-one multilingual neural machine translation.
The contribution of this paper is as follows:
(1) The development of 170,000 parallel corpus
in Russian-Uzbek-Uyghur-English-Chinese.
(2) A methodology is proposed for the
incorporation of language labels that do not
necessitate enhancements to the translation
model. This approach involves reconstructing a
new training datasets by integrating language
labels during the preprocessing phase, followed
by direct training utilizing a single-source
translation model. This method allows for the
simultaneous participation of multiple source
languages in the training process, thus enhancing
the translation quality of the model.
3. Three many-to-one multilingual translation
models characterized by stacking, parallelism,
and fusion are replicated, and a novel many-to-
one multilingual translation model, termed the
sublayer fusion model is introduced.
Additionally, the source codes for four models
are provided.

2. Related Work
Li et al. [1] introduced the PreAlign framework
for multilingual translation, which resulted in a
significant improvement in translation
performance compared to traditional models.
This framework not only addressed several
limitations of traditional statistical machine
translation (SMT) models but also introduced
innovative pre-training alignment techniques to
enhance cross-lingual transfer capabilities.
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However, SMT models generally lack the ability
for end-to-end training, which limits their
flexibility. To overcome this, Purason and Tättar
[4] introduced the concept of shared embeddings
in multilingual neural machine translation (NMT)
by jointly training language-specific encoder-
decoder systems. This approach optimizes the
network structure by representing all languages
in a common embedding space, which improves
both the efficiency of model training and the
translation quality. Unlike earlier work relying
on Long Short-Term Memory (LSTM) models,
shared embedding focus on unifying language
representations, which enhances multilingual
performance.
A revolutionary approach to utilizing large
language models (LLMs) for addressing
multilingual tasks is cross-lingual in-context
learning (XICL). This method is particularly
advantageous when resources are scarce, as it
facilitates multilingual translation without the
need for extensive parallel corpora. Building on
these advancements, Rojas and Carranza [5]
introduced an innovative self-supervised
technique that leverages the generative
capabilities of LLMs to internally select and
utilize task-relevant examples. This approach
establishes two primary objectives: a semantic
coherence loss to ensure cross-lingual
consistency and a retrieval-generation alignment
loss to enhance the quality of selected examples.
The technique developed by Rojas and Carranza
[5] enables effective translation outcomes with
minimal supervision, paving the way for new
research opportunities in multilingual translation.
Wang and Zhang [6] introduce an innovative
method based on parameter differentiation,
which enables the model to identify parameters
that should be tailored to specific languages
during the training process. Drawing inspiration
from the concept of cellular differentiation, this
approach allows each shared parameter to
dynamically evolve into more specialized forms.
The authors establish the differentiation criterion
based on the similarity of gradients across tasks.
Consequently, parameters exhibiting conflicting
inter-task gradients are more likely to be
designated as language-specific, thereby
enhancing the model's efficiency and overall
translation quality in multilingual contexts.
Subsequently, Cheng et al. [7] introduced a
unified framework for multilingual machine
translation and cross-lingual language
understanding. This framework not only

differentiates languages through the addition of
language labels but also enables the
simultaneous handling of both translation and
language understanding tasks. This dual
capability broadens the scope of multilingual
translation models and significantly enhances
their practical applications in diverse linguistic
contexts.
Recent developments in multilingual translation
have further refined parameter-sharing
techniques. Guo et al. [8] introduced an adapter
fusion approach to achieve parameter-efficient
multilingual machine translation. By integrating
two pre-trained BERT models from the source
and target language domains into a sequence-to-
sequence model through the introduction of
lightweight adapter modules, this approach
enhances model training efficiency and supports
improved scalability in multilingual contexts.
Similarly, Escolano [9] proposed a method based
on multilingual information fusion, which
incorporates multimodal data into the parameter-
sharing process. This technique enhances the
model's ability to handle complex language
scenarios, thereby improving both efficiency and
translation accuracy. Additionally, Trankova et
al. [10] proposed an enhanced neural machine
translation (NMT) framework that integrates
cross-sentence context through redesigned
positional encoding, hierarchical encoding, and
conditional attention mechanisms. This approach
strengthens the attention mechanism at various
language levels. This targeted focus on specific
language structures during translation further
enhances the quality of multilingual outputs.
In conclusion, the field of multilingual machine
translation has evolved significantly with
advancements in parameter sharing techniques,
unsupervised methods, and dynamic adaptation
to different languages. Each of the proposed
methods has contributed uniquely to the
improvement of translation efficiency and
quality, providing valuable insights for future
research and practical implementations of
multilingual systems.

3. Construction of Multilingual Parallel
Corpus
The multilingual parallel corpus encompassing
Russian-Uzbek-Uyghur-English-Chinese has
been manually constructed, utilizing a bilingual
parallel corpus as the foundational data. This
corpus was translated into the other three
languages using Google Translate and Maverick
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Translate, followed by a screening process,
resulting in a total of 170,000 multilingual
parallel corpora. The construction process is
delineated into four distinct phases: the
acquisition or creation of the bilingual parallel
corpus, translation via translation tools,
similarity screening, and manual verification.
This section will provide a detailed account of
the construction process based on these four
steps.
Acquisition or Creation of the Bilingual Parallel
Corpus: The extension of bilingual data is
employed to facilitate the construction of the
multilingual parallel corpus. The bilingual
datasets include Russian-English, Chinese-
Russian, English-Chinese, and Uyghur-Chinese.
The English-Chinese and Chinese-Russian
bilingual corpus are generalized datasets sourced
from official repositories, while the Uyghur-
Chinese parallel corpus has been developed
internally in the laboratory and the Russian-
English dataset was generated by utilizing the
Houyi Collector to extract parallels from a
multilingual website.
Translation via Translation Tools: Upon the
completion of the bilingual parallel corpus
acquisition or creation, the data is translated into
the remaining three languages using Google
Translate and Maverick Translate. The
translation protocols are illustrated in (a)(b)(c)(d)
in Figure 1. Each language undergoes
bidirectional translation, resulting in a total of
eight files, as depicted in Figure 1. The
generated files in (a) include English, English-
to-Chinese, Chinese-to-English, Chinese-to-
Uyghur, Uyghur-to-Chinese, Russian, Russian-
to-Uzbek, and Uzbek-to-Russian, which are
subsequently utilized for similarity screening.
Similarity Screening: As illustrated in Figure
1(a), a total of eight files were generated
utilizing a translation tool, of which five namely
English, Chinese-to-English, English-to-Chinese,
Uyghur-to-Chinese, Russian, and Uzbek-to-
Russian were employed for similarity screening.
The presence of substantial error information in
sentences produced by machine translation tools
often results in inaccuracies, omissions, and
other issues, thereby compromising the quality
of the multilingual parallel corpus. Consequently,
a preliminary screening of sentences is
imperative to eliminate those of inferior quality.
The metval tool was utilized to compute the
similarity of the English-Chinese-to-English,
Russian-Uzbek-to-Russian, and English-to-

Chinese-Uyghur-to-Chinese translations. In this
process, Chinese text was segmented into words,
while the other languages were processed using
a tokenizer. perl mentioned by Mielke et al. [11].
Following the similarity calculations, parallel
sentence pairs with BLEU values exceeding 0.5
were selected from these three groups, and the
corresponding parallel sentence pairs for the five
languages were subsequently saved.

(a) English-Russian translation rules

(b) Chinese-Russian translation rules

(c) English-Chinese translation rules

(d) Chinese-Uyghur translation rules
Figure 1. Translation Rules of English-

Russian Chinese-Russian English-Chinese
Chinese-Uyghur Parallel Corpus into Other

Three Languages
Manual Filtering: The quality of the multilingual
parallel corpus obtained post-machine filtering
exhibited a marked improvement compared to
the pre-filtering [12] stage, however, certain
sentences continue to present issues such as the
presence of special symbols, poorly constructed
sentences, and incomplete sentences. Therefore,
manual filtering was deemed necessary.
Sentences characterized by an excessive number
of special symbols, poor structure, or a lack of
logical coherence were systematically filtered
out. The final datasets produced represents the
constructed multilingual parallel corpus, with the
total volume of multilingual data summarized in
Table 1.
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Table 1. The Amount and Total Amount of
Data Filtered for Each Language Pair
Language Amount of data Total amount of data

Russian-English 40 000

17 000Chinese-Russian 40 000
English-Chinese 40 000
Uyghur-Chinese 50 000

4. Multi-Source Neural Machine Translation
Model
This thesis presents the implementation of a
many-to-one multilingual neural machine
translation model through two primary
approaches: data preprocessing and structural
modifications to the Transformer model. Data
preprocessing involves applying linguistic
markup to incorporate language labels for
various languages, which are then combined to
create the dataset for the single encoder-single
decoder translation model, thereby facilitating
the training of the many-to-one multilingual
translation model. The modification of the
Transformer model structure initially replicates
the three models of stacking, parallelism, and
fusion as proposed by Liang et al. [2], and

subsequently introduces a novel sub-layer fusion
model to achieve the many-to-one multilingual
translation model. This section will first outline
the labeling rules associated with the linguistic
markup, followed by a detailed discussion of the
four translation model structures: stacking,
parallelism, fusion, and sub-layer fusion.

4.1 Linguistic Markup
The many-to-one multilingual machine
translation model is achieved through a
straightforward modification of multilingual data,
maintaining the original structure of the
translation model. The linguistic markup
involves annotating words in multilingual
sentences at the source level with the format
#lang#, where "lang" represents various
languages, such as "ru" for Russian, "uy" for
Uyghur, "en" for English, and "uz" for Uzbek.
This approach facilitates the direct
amalgamation of different languages into a new
source datasets, which inherently contains
multiple languages, thereby enabling many-to-
one Multilingual Neural Machine Translation.

Table 2. Multilingual Training Data with Label
Sentence Original sentence Tagged sentences

src

ru Ясчастлив. #ru#Я#ru#счастлив#ru#.
uz Men baxtliman. #uz#Men#uz#baxtliman#uz#.
uy mEn bEk huxal. #uy#mEn#uy#bEk#uy#huxal#uy#.
en I am happy. #en#I#en#am#en#happy#en#.

tgt zh Wohenkaixin Wohenkaixin
In this study, the source languages include ru, en,
uy, uz, while the target language is Chinese.
Language labels are systematically applied to
four semantically equivalent sentences in the
source languages, with the results of this
labeling process presented in Table 2.

4.2 Modifying the Model Structure
The structure of the Transformer model is
illustrated in Figure 2. This research builds upon
the Transformer model by increasing the number
of multi-head non-self-attention mechanisms in
both the encoder and decoder, tailored to the
type of source language. This extension
replicates the three models of stacking,
parallelism, and fusion as proposed by Liang et
al. [2]. Drawing inspiration from the network
architecture of the fusion model, we decompose
the internal components of the encoder and
enhance the inner sub-layers based on the source
language type, thereby introducing a novel
model-sublayer fusion approach.

Figure 2. Transformer Model Structure
Diagram

3.3.1 Stacking model
The stacking model operates on the principle of
increasing the number of encoders and the multi-
head non-self-attention mechanisms in the
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decoder, corresponding to the type of source
language. Each source language is associated
with a distinct encoder, and each encoder is
linked to a specific multi-headed non-self-
attention mechanism in the decoder. The output
from the preceding multi-headed non-self-
attention mechanism acts as the input for the
subsequent mechanism. The structural
representation of the stacking model is
illustrated in Figure 3.
3.3.2 Parallel model
The parallel model shares a fundamental
similarity with the stacking model, as both
approaches expand the number of encoders and
multi-head non-self-attention mechanisms in the
encoder based on the source language type.
However, the parallel model diverges in its
processing within the decoder, where multiple
multi-head non-self-attention mechanisms are
computed concurrently, and their outputs are
subsequently integrated as inputs to the feed-
forward network in the decoder. A schematic of
the parallel model structure is depicted in Figure
4.
The parallel model fuses multiple multi-head
non-self-attention in the decoder according to
formula (1), where D_out is the fusion result of
multiple multi-head non-self-attention,m is the
language type, Mul1 is the result of the first
multi-head non-self-attention in the decoder, and
Add is the direct addition of the results
according to the same dimension.

D_out = Add(Mul1, . . . , Mulm) (1)

Figure 3. Stacking Model Structure Diagram

Figure 4. Parallel Model Structure Diagram
3.3.3 Fusion model
The fusion model operates on the principle of
augmenting the number of encoders by the
specific source language while maintaining a
constant decoder structure. Given the variability
in languages and sentence lengths, the output
dimensions produced by the encoders for
different languages exhibit discrepancies,
rendering a straightforward summation or
averaging of the outputs from multiple encoders
inadequate. In this study, we propose a method
to integrate the outputs from various encoders
based on sentence length, which will
subsequently serve as the input for the decoder.
The architecture of the fusion model is
illustrated in Figure 5.
The fusion model synthesizes the outputs of
multiple encoders as delineated in equation (2),
where E_con represents the consolidated output
from the various encoders, m denotes the
language type, E1 signifies the output from the
first encoder, and Concat refers to the
concatenation process executed by the sentence
length.

�_��� = ����� �1, . . . , �� (2)
3.3.4 Sublayer Fusion Model
The fundamental concept underlying the
sublayer fusion model is that the decoder
remains constant, while the encoder is bifurcated
into upper and lower layers. The number of
upper layers is adjusted based on the type of
source language, and the outputs from multiple
upper layers are concatenated following the
sentence lengths. These concatenated outputs
serve as inputs for the lower layers. There are six
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encoder layers in the context of the Transformer
model, these layers are categorized into upper
and lower segments. The upper layers are
augmented in number relative to the variety of
source languages, whereas the number of lower
layers remains fixed. Specifically, the upper
layer can consist of one to five layers, while the
corresponding lower layer will consist of five to
one layers, respectively. The outcomes of the
sublayer fusion model are illustrated in Figure 6.
The fusion of the upper layer of the encoder is
articulated through equation (3), where E_mid
represents the result of the upper layer fusion, m
denotes the language type, o1 signifies the
output of the first upper layer, and Concat refers
to the direct concatenation based on sentence
length.

�_��� = ������ �1, . . . , �� (3)

Figure 5. Fusion Model Structure Diagram

Figure 6. Sublayer Fusion Model Structure
Diagram

5. Experimental
In this paper, a self-constructed multilingual
parallel corpus is used as the experimental
dataset. Firstly, we study the enhancement of
low resource translation models by linguistic
markup experiments, during which the
differences between Latinized and un-Latinized
source languages are compared. Secondly,
experiments are conducted on the reproduced
stacked, parallel, fusion model and the sub-layer
fusion model proposed in this paper, comparing
the different models and comparing them with
the baseline model. The effect of the number of
language varieties in the test set on the multi-
source translation model is then explored. The
extent of model enhancement is then
investigated in terms of the number of source
languages involved in training. Finally, one's
translation model is compared with traditional
translation tools.

5.1 Experimental Data
The self-constructed parallel resources of
Russian-Uzbek-Uyghur-English-Chinese are
used as the experimental data, and 1,000 are
randomly selected from all the corpus as the test
set and validation set respectively, and the
remaining data are used as the training set, as
shown in Table 3 for the data volume of the
multilingual parallel corpus. The Chinese
language in the multilingual corpus is segmented
using the THULAC (Tsinghua University
Language and Computing) segmentation tool,
and the other languages are preprocessed using
Moses for data preprocessing. Chinese is used as
the target language in the multilingual parallel
corpus, and the other four languages are used as
the source languages. Chinese, English, Uzbek,
Russian, and Uyghur have 16 k, 14 k, 14 k, 12 k,
and 14 k BPE fusions times.

Table 3. Multilingual Data Volume
Dataset Number of sentences

Training set 176 009
Test set 1 000

Validation Set 1 000
All 178 009

5.2 Experimental Setup
The baseline model, along with the language
labeling experiments presented in this study,
utilizes the PyTorch implementation of
FACEBOOK's open-source FairSeq framework.
The enhanced multi-source translation model is
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constructed upon the Transformer architecture
inherent to the FairSeq system. All experimental
setups adhere to the Transformer Base
configuration, maintaining consistent parameters
for the hidden layer nodes and word vector
dimensions, both set at 512. The feedforward
neural network comprises 2,048 intermediate
layer nodes, while the architecture includes 6
encoder-decoder pairs and 8 multi-head attention
mechanisms. The Drop-out ratio applied within
the model is established at 0.3, with an
additional Drop-out rate of 0.1 implemented
following the activation function in the
feedforward network. The activation function
employed in this model is the glue. Parameter
optimization is conducted using the batch
stochastic gradient descent method, with a data
batch size configured to 4,096. The learning rate
is adjusted through the adaptive Adam algorithm
(10-9, 0.9, 0.997), and a warm-up period of
4,000 iterations is incorporated.
In the decoding phase of the model, the Beam-
search parameter is established at a value of 4,
with a data batch size of 64 without taking the
influence of the reference translation's sentence
length on the scoring mechanism into account.
The length penalty coefficient is assigned a
value of 0. Additionally, post-processing of the
translation outputs involves the removal of the
BPE (Byte Pair Encoding) flag. The evaluation
of the model's results is conducted utilizing the
multi-bleu.perl.

5.3 Baseline Model
Table 4. Multilingual Data Volume
Language BLEU

English→Chinese 37.13
Russian→Chinese 36.32
Uzbek→Chinese 36.90
Uyghur→Chinese 44.90

In this paper's many-to-one multilingual neural
machine translation experiment, the source
languages are English, Uzbek, Russian, and

Uyghur, so this experiment adopts the
English→Chinese, Russian→Chinese,
Uzbek→Chinese, and Uyghur→Chinese
translation models as the baseline model, and the
experimental results are shown in Table 4.

5.4 Experimental Results
(1) Results of Linguistic Markup in Experiments
The findings from the experiments utilizing the
linguistic markup are presented in Table 5. The
term "unLatinized" refers to the traditional
experimental outcomes derived from the direct
mixed training of a multi-source translation
model involving English, Russian, Uzbek, and
Uyghur, supplemented with linguistic labels at
the source level. The results indicate that in
comparison to the baseline model, there is no
enhancement in translation performance from
English→Chinese and Uyghur→Chinese.
However, improvements were observed in the
Russian→Chinese and Uzbek→Chinese
translations, with increases of 1.95 and 0.8
BLEU (Bilingual Evaluation Understudy) scores.
To reduce source-side multilingual complexity
and enhance lexical sharing, source-side
multilingual sentences were Latinized. This
approach aimed to increase commonalities and
minimize differences among these languages.
Latinization involved employing a Latinization
tool to convert the four languages at the source
level into Latin script, followed by the addition
of language labels. Specifically, the uroman tool
was utilized to transform all four languages into
their Latin-script equivalents, thereby
standardizing the diverse writing systems. This
approach enabled the fusion of these languages
to create a novel source language for training the
many-to-one multi-language machine translation
model. The results of the Latinization
experiment demonstrated further improvements
in the Russian→Chinese, Uzbek→Chinese, and
Uyghur→Chinese translations compared to their
un-Latinized counterparts.

Table 5. Experimental Results of Latinization and Non-Latinization with Labels
Model English→Chinese Russian→Chinese Uzbek→Chinese Uyghur→Chinese

Non-Latinization 36.74 38.27 37.70 42.58
Latinization 36.24 39.10 38.57 44.37

(2) Experimental Results of Modifying the
Model Structure
In the conducted experiments involving four
many-to-one multilingual machine translation
models namely stacking, parallelism, fusion, and
sublayer fusion, the training process incorporates

multiple source languages. Each language is
associated with a specific encoder or a
designated upper layer of the encoder.
Consequently, the model's performance is
influenced collectively by all the languages
involved. The parameter updates are oriented
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towards optimizing the overall model rather than
focusing on achieving optimal performance for
any single language or encoder layer. Thus, the
model's quality is a function of the combined
contributions from the various source languages.
During the testing phase, a test set comprising
four source languages is utilized simultaneously,
resulting in a singular output from the model,
which is then compared against baseline models
for each language.
As illustrated in Table 6, the experimental
outcomes for the three many-to-one multilingual
translation models—fusion, stacking, and
parallelism indicate that the stacking model
outperforms the others, achieving a BLEU score
of 47.30. The performance of the fusion and
parallelism models is relatively similar. When
comparing the stacking model to the translation
models for English-Chinese, Russian-Chinese,
Uzbek-Chinese, and Uyghur-Chinese, it
demonstrates improvements in BLEU scores of
9.63, 10.44, 9.86, and 1.86, respectively.
Table 6. Fusion, Stacking, and Parallel Model

Experiments
Model BLEU
Fusion 46.76
Stacking 47.30
Parallel 46.87

Table 7. Sublayer Fusion Model Experiment
The layer number of the first

part of the sublayer BLEU

1 46.91
2 47.11
3 47.16
4 47.42
5 47.02

Table 7 presents the experimental results for the
sublayer fusion model proposed in this study. In
this model, the encoder's sublayers are divided
into upper and lower layers, with the total
number of layers equating to the sum of the
upper and lower layers. When the upper layers
are set to four, the model achieves its optimal
performance with a BLEU score of 47.42,
reflecting enhancements of 10.29, 11.1, 10.52,
and 2.52 BLEU points compared to the English-
Chinese, Russian-Chinese, Uzbek-Chinese, and
Uyghur-Chinese translation models. Notably,
irrespective of the number of upper layers, the
quality of this model significantly surpasses that
of the aforementioned translation models. A
comparison between the sublayer fusion model
and the three reproduced models reveals

improvements in BLEU scores of 0.66, 0.12, and
0.55.

5.5 Multi-Source Testing
The four many-to-one multilingual translation
model experiments were implemented by
modifying the model structure, the model uses
test sets of English, Russian, Uzbek, and Uyghur
input into the model at the same time to test the
translation quality of the model, and does not
consider testing the quality of the model with a
single test set or any other combinations of test
sets, so this subsection uses a different number
of test sets of languages involved in the model
translation to study the changes in the quality of
the model's translations.
Using the fusion model as a case study, the test
outcomes for various languages in the test set are
presented in Table 8. These outcomes were
derived from evaluating a many-to-one
multilingual translation model utilizing test sets
comprising Uyghur, Uyghur-English, Uyghur-
English-Uzbek, as well as Uyghur-English-
Uzbek-Russian. Notably, when the test set
consisted of Uyghur data, the translation result
was recorded at 34.98, which is inferior to the
results obtained from the bilingual training
model. However, it is observed that the
translation performance of the model improves
as the number of languages in the test set
increases. Specifically, when the model is
assessed using all available test set languages, it
achieves its highest performance score of 46.76.

Table 8. Test Results of Test Sets with
Different Number of Languages

Test set BLEU
Uyghur 34.98

Uyghur-English 45.20
Uyghur-English-Uzbek 46.68

Uyghur-English-Uzbek-Russian 46.76

5.6 Multi-Source Training
Subsequently, this study performs a multi-source
evaluation to investigate the impact of the
quantity of source language types utilized during
training on the translation model. As illustrated
in Table 9, the fusion model demonstrates that
incorporating two, three, and four source
languages in the training process correlates with
an enhancement in the quality of the translation
model, indicating that an increase in the number
of source languages contributes positively to
translation performance.
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Table 9. The Degree of Improvement of the
Research Model from the Perspective of the

Number of Source Languages
Source Languages BLEU

Uyghur 44.90
Uyghur-English 46.63

Uyghur-English-Uzbek 46.82
Uyghur-English-Uzbek-Russian 47.30

5.7 Comparative Experiments
As illustrated in Table 10, this subsection
conducts a comparative analysis of the fusion,
stacking, parallel, and sublayer fusion models
against the methodologies put forth by Zoph,
Garmash, Dabre, et al. The findings indicate that
the translation models derived from the sublayer
fusion approach exhibit superior quality
compared to those developed by prior
researchers.

Table 10. Result of Comparative
Experimental

Model BLEU
Fusion 46.76
Stacking 47.30
Parallel 46.87

Sublayer fusion 47.42
Zoph 33.47

Garmash 46.32
Dabre 45.63

5.8 Translation Tools Translation
In this study, we present a baseline model that
we have developed, which is subsequently
compared with widely used translation tools.
The evaluation is conducted using a test set
comprising 1,000 self-constructed multilingual
sentences. This allows us to analyze the
performance of our model about popular
translation tools across various languages,
identifying those languages in which our model
demonstrates superior translation capabilities as
well as those in which it performs less
effectively. Furthermore, we compare the
translation outcomes of the linguistic markup
and the stacking, parallelism, fusion, and sub-
layer fusion models proposed in this paper
against established translation tools, thereby
assessing the enhancements made to the
multilingual translation model introduced herein.
As presented in Table 11, various translation
tools, including Google Translate, Baidu
Translate, and Maverick Translate were
employed to translate the test set, with BLEU

scores computed based on the translation
outcomes and subsequently compared to the
baseline model. The translation quality of
Google Translate surpassed that of the baseline
model solely for the Russian → Chinese
translation. In contrast, Baidu Translate
demonstrated significantly superior performance
compared to the baseline model for
English→Chinese and Uyghur→Chinese
translations, although it performed worse than
the baseline for the other two language pairs.
Maverick Translate yielded commendable
results for both English→Chinese and
Russia→Chinese translations. However, its
performance in the Uzbek→Chinese translation
was marginally inferior to that of the baseline
model.
The findings illustrated in Tables 5, 6, 7, and 11
indicate that, within the context of the linguistic
markup methodology employed in this study, the
results for English→Chinese and
Russian→Chinese translations were generally
slightly inferior to those produced by the
translation tools. Conversely, for the
Uzbek→Chinese translation, the results for
English→Chinese were markedly superior to
those generated by the three translation tools. In
the experiments involving stacking, parallelism,
fusion, and sub-layer fusion models conducted in
this study, the optimal result achieved was 47.42,
which outperformed all other results, except for
the Russian→Chinese translation result obtained
by Maverick Translate.

Table 11. Translation Tools translation
Translation

tools
English-
Chinese

Russian-
Chinese

Uzbek-
Chinese

Uyghur-
Chinese

Google 36.43 39.98 35.46 31.24
Baidu 43.98 32.59 11.35 46.66

Maverick 36.82 55.28 32.31 -

6. Conclusions
This research focuses on developing a many-to-
one multilingual neural machine translation
model. It constructs a parallel corpus covering
Russian, Uzbek, Uyghur, English, and Chinese.
Meanwhile, it proposes linguistic markup and
model structure modification methods.
Linguistic markup adds language labels to the
source-side mixed parallel corpus to create new
datasets for single-source, single-target training.
The structure modification adjusts the encoder
and decoder of the Transformer model to allow
multiple source languages to be input
simultaneously for translation into the target
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language.
Effect of Linguistic Markup: Linguistic markup
can significantly improve the translation quality
of certain languages. After the multilingual
Latinization of source data, the translation
quality is further enhanced.
Effect of Model Structure Modification: Four
modeling strategies, namely stacking,
parallelism, fusion, and sub-layer fusion, can
greatly improve the translation quality of low-
resource models. Among them, the sub-layer
fusion model performs best, with a BLEU score
of 47.42, showing improvements of 10.29, 11.1,
10.52, and 2.52 compared to the English-
Chinese, Russian-Chinese, Uzbek-Chinese, and
Uyghur-Chinese translation models respectively.
Impact of Multi-source Training and Testing:
Through multi-source training and testing
methods, it is found that more involvement of
source languages in the model reasoning process
and incorporating more source languages during
the training phase are positively correlated with
the improvement of translation quality.
Model Performance Comparison: A comparative
evaluation of the four modeling techniques
shows that the sub-layer fusion method
outperforms previous approaches in performance.
Compared with traditional translation tools, the
stacking, parallelism, fusion, and sub-layer
fusion models are significantly more effective in
translating from Uzbek to Chinese.
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