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Abstract: In this paper, we conduct a
systematic analysis of the construction
thought for generating functions. We
specifically examine the construction
processes of specific algebraic forms,
demonstrating their practical advantages
through combinatorial counting problems.
We extend the structural analysis of
generating functions through the integration
of Euler’s proof of the infinitude of primes.
Furthermore, we interpret the Bertrand-
Chebyshev theorem from the perspective of
generating functions, highlighting how the
absence of elementary contributions
constrains the representational power of
generating functions. Through an in-depth
analysis of challenging sequence problems, we
demonstrate the potential of generating
functions in addressing complex
mathematical problems. Finally, the future
development of generating function
construction thought is prospected,
underscoring its indispensable role in modern
mathematics and interdisciplinary fields.

Keywords: Construction Thought;
Generating Functions; Representational
Power; Sequence

1. Introduction
As a core analytical tool in discrete mathematics,
generating functions have profoundly influenced
the developmental trajectories of combinatorics
and number theory since their conceptual
inception. The origins of this concept can be
traced to Euler’s systematic application of power
series, where he encoded numerical sequences
into continuous functions to solve recurrence
relations and partition problems, thereby
establishing the methodological foundation of
generating functions. Subsequent scholars,
including Laplace, Ramanujan, and Pólya,
further expanded their applications, solidifying
their irreplaceable role in enumerative

combinatorics, probability theory, and
algorithmic analysis.
Bach E's investigation of generating functions
and polynomial division serves as an excellent
paradigm for our research [1]. Recent studies by
Gu et al. [2], Xu et al. [3] and Zhu et al. [4] have
investigated the formal expressions of
generating functions, while Han et al.
investigated the recursive solution of the double
forcing polynomial for ladder graphs [5]. Qi et al.
explored their recursive formulations in
subdivision schemes [6]. However, current
research still lacks a systematic analysis of the
under-lying construction thought of generating
functions. Classical literature predominantly
focuses on surface-level applications to counting
problems (e.g., integer partitions and Catalan
numbers), leaving the potential of generating
functions in complex discrete systems
underexplored. For instance, Euler’s proof of the
infinitude of primes, though not explicitly
framed in generating function terminology,
implicitly embodies the conceptual framework
of linking discrete sequences through analytic
continuation. The recent surge in research on
nonlinear recursions and combinatorial
optimization problems has been particularly
notable. Numerous scholars have conducted
research on generation [7] and recursion [8,9], as
well as on polynomials. Zhang investigates the
sequence model from the perspective of
generating functions [10]. Although generating
functions represent a powerful tool for solving
highly complex sequence problems, the
application of such techniques in sequence-
related issues remains challenging without a
solid grasp of construction thought [11-13].
Moreover, our analysis reveals that the Bertrand-
Chebyshev theorem inherently demonstrates
how gaps in prime distribution—manifested as
missing elemental contributions—constrain the
representational capacity of generating functions,
thereby offering a critical entry point for
methodological innovation.

Journal of Natural Science Education (ISSN: 3005-5792) Vol. 2 No. 2, 2025 1

Copyright @ STEMM Institute Press http://www.stemmpress.com



To address these critical gaps, this paper aims to
systematically elucidate the core thought
underlying the construction of generating
functions and illuminate their methodological
value in discrete problem-solving [14] through
representative case studies.

2. Process and Analysis

2.1 Some Examples
Generating functions hold significant
applications in solving discrete problems. This
can be illustrated through several specific
examples.
For partition problems, generating functions
can be employed to calculate different ways
of partitioning integers. The generating
function for integer partitions is ex-pressed as:

1

1( )
1 k

k

P x
x






 (1)

In this context, the coefficient represents the
partition number of different integers k . For
example, the coefficient of the term 5x
indicates the number of ways to partition 5
into a sum of distinct integers. Using this
generating function, partition numbers can be
computed efficiently without enumerating all
possible partitions.
Generating functions are also widely applied
in calculating Catalan numbers, playing a
crucial role particularly in counting problems
like binary tree structures and parenthesis
matching. For instance, with the generating
function:

1 1 4( )
2

xC x
x

 
 (2)

Various combinatorial numbers can be
calculated clearly.
Returning to one of the classic problems in
combinatorics—the Fibonacci sequence
[15]—its recurrence relation is:

( ) ( 1) ( 2)
(0) 0
(1) 1

F n F n F n
F
F

   
 
 

(3)

Using the generating function, the recurrence
relation can be transformed into an algebraic
equation:

2( )
1

xG x
x x


 

(4)

Through the generating function, one can
easily derive the explicit formula without
recursive computation term by term.
Generating functions also have extensive
applications in probability theory, aiding
systematic calculation and analysis of
probability distributions. For a discrete
random variable X , its probability
generating function is defined as:

0
( ) [ ] ( )X k

X
k

G x E x P X k x




   (5)

By differentiating the generating function,
statistical measures such as the expected
value and variance of the random variable
can be directly obtained. Take a random
variable ( , )X Bin n p that follows a
binomial distribution as an example; its
probability generating function is:

( ) ( 1 ) nXG x px p   (6)
This generating function provides a
convenient method to calculate various
properties of the binomial distribution.
Without summing term by term, it
significantly improves problem-solving
efficiency.

2.2 Construction of Specific Forms
As a classic early application of the
generating function idea, the construction of
the generating function for the Fibonacci
sequence problem demonstrates the ingenuity
of its application. To deeply explore the
construction of specific forms [16], an
original self-designed problem is as follows:
Given the sequence { }na satisfies

1 22n n na a a   , with 0 1a  and 1 3a  , prove
that for all 0n  , 3nna  holds.
This problem can be addressed using
mathematical induction. However, here we
illustrate the construction of a generating
function to establish a connection between
the discrete and the continuous domains.
Define the generating function:

2 3
0 1 2 3

0

( )

n
n

n

A x a a x a x a x

a x




    




(7)

Using the recurrence relation 1 22n n na a a   ,
we transform (7) as follows:

 

0 1 0 1 1 2 0 1 1 2
2 2 2 2

2 2
0 1 0

( ) ( 2 ) 2

( ) 2 ( ) 1 3 ( ) 2 ( )

n n n n
n n n n n

n n n n

A x a a x a x a a x a a x a a x a x a x

a a x x A x a x A x x xA x x x A x

   

   
   

          

         

    (8)

2 Journal of Natural Science Education (ISSN: 3005-5792) Vol. 2 No. 2, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



After rearranging equation (8), we derive:

2
1 2( )

1 2
xA x

x x



 

(9)

Next, define another generating function:

0

1( ) 3
1 3

n n

n
B x x

x





 
 (10)

It is necessary to prove that ( )A x in equation
(9) is smaller than ( )B x in equation (10)

when 1| |
3

x  . Eventually, simplifying the

inequality leads to 2 0x  , which obviously
holds. Thus, the proposition is proved.

2.3 Applying the Construction Thought to
Practical Problems
In this section, we employ generating
functions as a tool to address practical
problems. Consider the following problem
designed for illustration:
There exist five distinct types of balls, each
available in an infinite quantity and differing
in color. The task is to select 10 balls under
the constraint that at least one red ball must
be included. Determine the number of
possible ways to perform this selection.
According to the problem, since at least one
red ball must be selected, the possible
numbers of red balls to select are 1,  2,  3, ,
and its generating function is:

2 3
1( )

1
xG x x x x
x

    


 (11)

For the balls of the remaining four colors,
each color allows selecting 0 or more balls.
Thus, the generating function for each color
is:

2 3
2

1( ) 1
1

G x x x x
x

     


 (12)

Here, kx represents selecting k balls. As the
selections of different colors are independent,
the overall generating function ( )G x is the
product of the generating functions of each
color:

 4
1 2

4

5

( ) ( ) ( )

1
1 1 (1 )

G x G x G x

x x
x x x



       

(13)

To find the total number of ways to select 10
balls, this corresponds to the coefficient of

10x in the generating function ( )G x , that is:
10 9

5 5
1[ ] [ ]

(1 ) (1 )
xx x
x x


 

(14)

To find the coefficient of 9x , the extended
form of the Binomial Theorem is used:

0

11
1(1 )

n
k

n

n k
x

kx





  
    
 (15)

Substitute 5k  and 9n  :
9

5

9 5 11[ ] 715
5 1(1 )

x
x

  
    

(16)

Therefore, under the condition of including at
least one red ball, there are 715 different
ways to select 10 balls from 5 types of balls
with infinite quantities in different colors.

2.4 The Deepening of Thought
Euler’s proof of the theorem on the infinitude
of prime numbers is renowned for its
classical nature and innovative features.
Although it does not strictly belong to the
traditional generating function category, it
profoundly embodies the idea of generating
functions. Euler’s method transcends the
counting level. Through the decomposition
properties of generating functions, it reveals
structural problems in number theory,
marking the deepening and expansion of the
generating function idea from counting
analysis to structural research.
In Euler’s proof, the generating function
appears in the form of the Riemann function:

1

1
s

n n






 (17)

Where 1s  ensures the convergence of the
series. This function captures the structure of
all natural numbers, where each term sn
corresponds to the contribution of the natural
number n . By uniquely decomposing each n
into prime power products:

1 2
1 2

kaa a
kn p p p  (18)

Euler transformed the generating function of
natural numbers into a generating function
related to prime numbers, thus obtaining the
Euler product form of the Riemann function:

2

1 1( ) 1

1
1

s s
p

s
p

s
p p

p





 
    

 








 (19)

Where p represents prime numbers. This
decomposition directly links the generating
function of natural numbers with the structure
of prime numbers, indicating that the
structure of natural numbers is completely
composed of prime numbers.
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Further considering the limit of ( )s as
1s  , at this time, ( )s degrades into the

harmonic series:

1

1(1)
n n






 (20)

The harmonic series is divergent, indicating
that ( )s tends to infinity at 1s  . However,
if the number of prime numbers were finite,
assuming the prime set is a finite set

1 2 3{ ,  ,   , ,  }kp p p p , then the Euler product
form of ( )s would be:

1

1( )
1

k

s
i i

s
p

 



 (21)

The product of a finite number of terms
results in a finite value. Even as 1s  , this
product would also converge to a finite value.
This contradicts the divergent property of the
harmonic series (1) . Therefore, the set of
prime numbers cannot be finite, and thus it is
concluded that prime numbers are infinite.
Euler’s proof encodes the structures of
natural numbers and prime numbers into the

( )s function and its Euler product form. By
analyzing the divergence of the generating
function and the contradiction in the
decomposition form, it intuitively proves the
infinitude of prime numbers, demonstrating
the powerful role of generating functions in
discrete mathematics. Next, we will explore
its underlying mechanism and core ideas to
provide a clearer theoretical perspective for
revealing the essence.

2.5 Core of the Construction Thought
Ling and Xu [17] stated, “The step-by-step
multiplication counting principle essentially
illustrates the necessary procedures for
completing a task, progressing step by step
with interlocked links. These two counting
principles, combined with counting formulas,
form the core process by which generating
functions handle counting problems.”
The core idea of using generating functions
to address counting problems can be further

generalized to the construction thought in
generating functions. Its essence lies in
systematically linking discrete elements in an
ordered sequence through generating
functions. This process can be metaphorically
likened to threading multiple rings onto a
string: to retrieve a specific ring, the
preceding ones must be removed sequentially,
with each step laying the foundation for
subsequent actions. The absence of any step
disrupts the entire sequence and impacts later
stages. In this analogy, forcibly extracting a
ring from the back would deform the
structure, stripping the rings of their original
form and properties. For generating functions,
this corresponds to the loss of contributions
from certain elements, thereby weakening the
function’s representational capacity and
failing to preserve the intrinsic characteristics
of the combinatorial structure.
To intuitively demonstrate this core idea,
consider a specific example. Using the
construction thought of generating functions,
we explore the Bertrand-Chebyshev
theorem’s core implication (discussed here,
without rigorous proof). The theorem states:
for each integer 1n  , there is at least one
prime in ( ,  2 )n n .
Define a generating function ( )F x to encode
prime number information within 2n :

02

1( )
1

k
kp

kp n

F x a x
x





 
  (22)

Where p is prime number, and ka denotes
the number of ways to express integer k as a
sum of primes. We decompose the expression
in equation (22) into two parts:
First, we explore the actual expression form
of the generating function. Let q be the
largest prime in (0,  )n . A detailed expansion
of 1( )F x in equation (23) is as follows:

2

2

1 2

1( )
1

1 1
1 1

( ) ( )

p
p n

p p
p n n p n

F x
x

x x
F x F x



  




 
 

 



 
(23)

1

2 4 3 6 2
2 3

1( )
1

1 1 1 (1 )(1 ) (1 )
1 1 1

p
p n

q q
q

F x
x

x x x x x x
x x x






                           



    

(24)

From equation (24), it is evident that each
prime number recorded in the generating
function is formed by the permutation and

combination of the preceding sequences.
Each prime number serves as a base point,
gradually constructing new combinations.
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Next, explore the generating function’s
cumulative contribution. By absolute

convergence, let k mp :

1

1 1 1 1
|

1 1log ( ) log log
1 1p p

p np n

mp mp
k k

k
p n m m p n k p n k

p k

F x
x x

x x p x c x
m m k



   

      

          
 
      
 



    

(25)

Apply the exponential operation to (25) to restore the form of the generating function:

1

2 3 2 3
1 1 2 2

1 1 2
( ) ( ) ( ) ( )( ) 1 1

2! 3! 2! 3!

k
k

k
c x c x c x c x c xF x e c x c x




   

           
  

   (26)

Observing (26), if there are no prime
numbers in the interval ( ,  2 )n n , its
cumulative effect will gradually weaken,
leading to a significant decline in generating
capability—i.e., the generation of larger
integers becomes increasingly sparse. Thus,
we can intuitively understand how the
generating function transforms discrete
problems into continuous ones. The core of
the generating function construction thought
lies in the profound logic behind it and the
unique charm of its mathematical structure.
The concepts of constructive thought and
representational ability may be somewhat
abstract. To help readers understand, we
present a simple example to vividly
demonstrate this process:
Based on the understanding of the core of
generating functions and constructive
thinking, an extension is made. By mimicking
the above thinking, another method is
adopted to interpret the Bertrand-Chebyshev
theorem. For the research needs of this paper,
we assume here that the Goldbach Conjecture
holds—any even number greater than 2 can
be expressed as the sum of two prime
numbers. A shift in thinking is required here,
imitating the core of generating functions and
constructive thought: “Each step lays the
foundation for subsequent steps, and the
absence of any step affects the follow-up
processes [18].” The premise for seeking the
next even number is that two prime numbers
have already been found to represent the
currently selected even number.
Starting with the even number 2n , it is
known that 2n n n  . If n is a prime
number, consider 2 2k n  . Obviously, the
combination of these two prime numbers will
not be 2n and 2 . The two prime numbers can
then be written as (2 )a and (2 )n a , where
0 2 1a n   and a is an integer. Notably, at

least one of them lies in the interval ( ,  2 )n n .
If n is not a prime number, continue to seek
two prime numbers to represent 2n . 2n can
be expressed as the sum of two prime
numbers ( )n b and ( )n b , where
0 1b n   and b is an integer. Again, at
least one lies in the interval ( ,  2 )n n .
Therefore, there exists at least one prime
number within the interval ( ,  2 )n n .

2.6 Highly Complex Construction
The core role of generating functions is
primarily manifested in the solution of
sequence problems, particularly serving as an
essential problem-solving tool for highly
complex sequences—especially non-
arithmetic or non-geometric sequences [19].
Inspired by Zhu, we posit that the
construction thought of generating functions
in sequence problems lies in perceiving the
commonalities and differences between
sequences and functions, thereby appreciating
the holistic nature of mathematics [20]. The
construction thought is not limited to the
examples mentioned earlier; in those
examples, the construction of generating
functions is not complex. The real difficulty
lies in understanding the structure and
mechanism of generating functions, as well
as the specific meanings of their coefficients
and degrees in the problems. The key is how
to think of using generating functions to
solve problems.
For many scholars, it is not easy to think of
using generating functions to solve sequence
problems. This ability depends on rich
problem-solving experience or an
understanding of the mathematical culture
and history of generating functions [21],
especially in classic problems such as the
Fibonacci sequence. In high-difficulty
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sequence problems, the use of generating
functions can be divided into two categories:
one is that simply thinking of generating
functions allows for a smooth construction,
testing divergent thinking and flexibility; the
other requires the combination of divergent
thinking and convergent thinking. Even if
generating functions are thought of, it is
difficult to construct them accurately,
demanding that problem solvers possess
mathematical intuition and strong
construction abilities.
Inspired by Li [22-25], the self-designed
original question is as follows:

Given the sequence { }na satisfying

1 1
(3 2)( 1)2

2n n n
n na a a 

 
   , with 0 0a 

and 1 1a  , find the general term formula of
{ }na .

Define the generating function
0

( ) n
n

n
f x a x





 .

According to the recurrence relation

1 1
(3 2)( 1)2

2n n n
n na a a 

 
   , multiply both

sides by nx and sum over n from 1 to  to
construct the generating function, obtaining:

1 1
1 1 1 1

(3 2)( 1)2
2

n n n n
n n n

n n n n

n na x a x a x x
   

 
   

 
      (27)

Handle each term on the left side of equation
(27) separately. For the first term:

1
1 1

1 1

0 1

1

( )

n n
n n

n n
a x a x

x
f x a a x

x

 


 
 



 


 
(28)

Substitute 0 0a  and 1 1a  into (28), we get:

1
1

( ) 1n
n

n

f xa x
x






  (29)

Processing the second term on the left side of
the equal sign in (27):

0
1

( ) ( )n
n

n
a x f x a f x





   (30)

The third term:

1
1 0

( )n n
n n

n n
a x x a x xf x

 


 

   (31)

Combining and sorting out (29), (30) and
(31), we can obtain:

1 1
1 1 1

12 1 2 ( ) 1n n n
n n n

n n n

a x a x a x x f x
x

  

 
  

       
 

   (32)

Next, process the right side of the equal sign in (27):
2

2

1 1 1 1 1

(3 2)( 1) 3 5 2 3 5
2 2 2 2

n n n n n

n n n n n

n n n nx x n x nx x
    

    

   
        (33)

Using the known generating function
formulas:

1

2
1

2
3

1

1

(1 )
(1 )

(1 )

n

n

n

n

n

n

xx
x
xnx
x

x xn x
x














 





 










(34)

Substituting (33) and conducting the
simplification, we obtain:

3 2

3
1

(3 2)( 1) 3 5
2 (1 )

n

n

n n x x xx
x





   


 (35)

Using the results from (32) and (35), we
establish an equation for ( )f x and simplify it
step by step:

3 2

3

3 2 3

3

3

1 3 51 2 ( ) 1
(1 )

1 3 5 (1 )1 2 ( )
(1 )

1 2 11 2 ( )
(1 )

x x xx f x
x x

x x x xx f x
x x

xx f x
x x

        
         
      

(36)

Finally, solving yields:

4 4

(2 1)( )
(2 1)(1 ) (1 )
x x xf x
x x x


 

  
(37)

This represents the final closed-form of the
generating function.
Next, expand the generating function to find
the general term. It is known that

4
0

31
3(1 )

n

n

n
x

x





 
    
 . Thus:

1

0 0

3 3
( )

3 3
n n

n n

n n
f x x x x

 


 

    
    

   
  (38)

This indicates that for 1n  , the general term
formula of the sequence { }na is:

2 ( 1)( 2)
3 6n

n n n na
   

  
 

(39)

It is found that when 0n  , 0 0a  also holds.
Therefore, (39) is the general term formula of
the sequence { }na .
Some scholars may attempt to solve this
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problem through general methods such as the
method of superposition. Such methods
usually introduce the difference sequence

1n n nb a a  based on the recurrence relation,
gradually solve the expression of nb , and
finally restore the general term formula of na
through superposition. However, the
recurrence relation of this problem is not in
the simple form of 1n nb b  and cannot be
directly superimposed. Solving the general
term formula of nb involves the particular
solution of the non-homogeneous equation
[26], constructing complex mathematical
techniques, which requires extremely high
comprehension and problem-solving skills.

3. Conclusions and Discussion
For highly difficult sequence problems, there
are various construction methods for
generating functions. Here, we discuss
another case:
Given 0 3b  and 1 9b  , satisfying

2 14 3 4 6n n nb b b n     , find the general
term formula of { }nb .
The construction method for this problem is
as follows:

2 1

1 2

4 3 4 6

4 3 4 2  2

n n n

n n n

b b b n

b b b n n

 

 

   

    


，

(40)

1 0 1 2
0 2 2

( ) (4 3 4 2) 9 3n n n
n n n n

n n n
f x b x b x b x b b b n x x

  

 
  

            (41)

It is evident that this directly transforms
( )f x , eventually written as Expression (41).

Through step-by-step simplification,
substituting (41) with an expression in terms
of x and ( )f x , we finally obtain:

3
2

2
2 6 (1 )(1 4 3 ) ( )

(1 )
x xx x f x
x

  
   


(42)

The difference in the construction thought of
this sequence problem from previous
sequence problems lies in that, for previous
sequence problems, the construction was
directly applied to the relational expression:

1 1
1 1 1 1

0

(3 2)( 1)2
2 ( ) ?

( )

n n n n
n n n

n n n n

n
n

n

n na x a x a x x
f x

f x a x

   

 
   





      
 

   



(43)

The complexity of the recurrence relation
(whether it contains non-homogeneous terms,
high-order terms, or non-linear terms)
determines the construction difficulty of the
generating function. The core difference
between these two cases is that the degrees of
the polynomials vary, leading to different
complexities in splitting non-homogeneous
terms. Quadratic terms require combining
high-order generating functions, while linear
terms only need low-order expansions.
Generating functions offer a unified
framework that elucidates the underlying
connections among problems, thereby
integrating and unifying many ostensibly
unrelated mathematical issues. For highly
challenging sequence problems, we
encapsulate the advantages of generating
functions in one statement: through algebraic

transformations, discrete problems are
reformulated as continuous function problems,
circumventing direct computations of
recursive superposition. This approach is
particularly suited for efficiently solving
complex recurrence relations. Regardless of
how the recurrence structure evolves,
generating functions translate the complexity
of recurrence relations into equation-solving
problems via algebraization and series
operations. The ultimate objective is to
simplify the generating function into an
expandable closed form.
Upon reviewing our entire research, which
centers on the construction thought of
generating functions, we systematically
analyzed the construction process for specific
forms and demonstrated its practical
advantages through counting problems.
Subsequently, by incorporating Euler’s proof
of the infinitude of prime numbers, we
extended structural research on generating
functions. Furthermore, through the
analytical lens of generating functions
applied to Bertrand-Chebyshev theorem, we
highlighted that the absence of element
contributions constrains the representational
capacity of generating functions. Through in-
depth analysis of original highly intricate
sequence problems, we illustrated the
potential of generating functions in
addressing complex issues.
Our research provides a systematic analysis of
the construction thought of generating functions.
It is anticipated that with further exploration by
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other scholars into the construction thought of
generating functions, they will unlock even
greater potential in foundational mathematics
and potentially in fields such as big data,
artificial intelligence, and quantum computing.
As a core tool, generating functions are expected
to continue evolving, offering innovative ideas
and fostering the deep integration of
mathematics with real-world applications.
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