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Abstract: This study proposes a recognition
and evaluation system for tennis forehand
actions based on a Hybrid Perception
Attention Network (HPA-Net). To address the
limitations of existing action recognition
models in handling high-speed and
fine-grained tennis actions, we designed an
innovative network architecture that
integrates spatial and temporal attention
mechanisms to achieve precise perception of
critical technical aspects of forehand actions.
The system incorporates a dynamic scoring
method, enabling it to adaptively focus on key
areas for improvement for players of different
skill levels. Experiments demonstrate that the
proposed HPA-Net model achieves a forehand
action recognition accuracy of 94.3% and a
posture evaluation overlap rate of 91.2%,
significantly outperforming existing methods.
This system has broad applications in tennis
training assistance, match technique analysis,
and personal skill improvement. It provides
coaches with objective and quantitative
teaching references, amateur players with
professional-grade technical guidance, and
athletes with critical data support for
technical analysis during competitions. This
study not only introduces a novel algorithmic
framework for tennis technique analysis but
also lays a methodological foundation for
evaluating other fine-grained sports
techniques.

Keywords: Tennis Forehand; Hybrid
Perception Attention Network; Dynamic
Scoring; Transfer Learning; Few-Shot
Learning

1. Introduction
As the most fundamental and commonly used
technical action in tennis, the quality of the
forehand stroke directly impacts match
performance and the risk of sports injuries [1].
Traditional teaching of forehand techniques
faces numerous limitations, primarily relying on

the coach's experience and subjective judgment
and lacking precise, consistent, and objective
evaluation standards. This subjective evaluation
approach not only makes teaching quality
dependent on the coach's expertise but also
deprives learners of quantitative feedback,
thereby reducing the efficiency and accuracy of
skill improvement [2].
In recent years, computer vision and deep
learning technologies have provided new tools
for sports action analysis [3]. However,
challenges remain in analyzing high-speed and
fine-grained actions such as tennis strokes:
Insufficient spatiotemporal feature capture:
Existing action recognition models, such as I3D
[4] and TSN [5], struggle to accurately capture
the high-speed and transient key movements in
tennis strokes, often failing to distinguish
technical details.
Poor adaptability to individual differences:
Significant variations exist in forehand strokes
among players of different skill levels, and
current models struggle to establish unified and
flexible evaluation standards [6].
High computational resource requirements:
Real-time action analysis requires efficient
algorithms, but current deep models are often
computationally expensive and difficult to
deploy on edge devices [7].
Limited datasets: Existing sports action datasets
are insufficient for tennis, particularly lacking
multimodal data for professional tennis
techniques [8].
To address these challenges, this study proposes
the Hybrid Perception Attention Network
(HPA-Net), aimed at providing a high-accuracy,
personalized solution for tennis forehand action
analysis. The main contributions of this study
include:
Proposing a hybrid perception attention
mechanism that combines spatial and temporal
attention to enhance feature extraction for
critical moments in strokes.
Designing a dynamic scoring algorithm that
adaptively adjusts scoring weights based on skill
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levels, providing targeted feedback for learners
at different stages.
Developing a lightweight model structure that
significantly reduces computational complexity
while maintaining high accuracy.
Building an end-to-end evaluation system that
automates the entire process, from video input to
action recognition, quality evaluation, and
technical recommendations.

2. Related Wor

2.1 Action Recognition Algorithms
Action recognition algorithms have evolved
from traditional handcrafted features to deep
learning methods. Traditional methods relied on
handcrafted feature descriptors, such as STIPs [9]
and IDT [10], but lacked robustness in complex
scenarios.
Deep learning methods have brought significant
advancements. Simonyan and Zisserman [11]
introduced a two-stream network combining
appearance and motion features. Carreira and
Zisserman [4] proposed the I3D model, which
uses inflated 3D convolutions to extract
spatiotemporal features. However, these general
models lack the sensitivity to capture key
technical details in specialized sports like tennis.
Recent studies have focused on attention
mechanisms. Wang et al. [12] introduced the
non-local neural network to model long-range
dependencies, enhancing overall sequence
understanding. Fan et al. [13] proposed the
SlowFast network, which uses a dual-path
architecture to process low-frame-rate semantic
information and high-frame-rate motion details.
These methods inspired this study.
2.2 Sports Action Evaluation
Sports action evaluation aims to quantify the
quality of sports techniques and provide
improvement recommendations. Pirsiavash et al.
[14] developed a gymnastics action scoring
system based on pose estimation. Parmar and
Morris [15] proposed the C3D-LSTM model to
directly learn action quality features from videos.
Zhu et al. [16] combined dynamic time warping
with convolutional neural networks (DTW-CNN)
to handle action sequences of varying lengths.
However, existing methods primarily focus on
overall action evaluation and lack understanding
of specific technical details in sports like tennis.
Most models adopt uniform evaluation standards,
ignoring the differing technical priorities of
players at various skill levels.

2.3 Few-Shot Learning and Transfer
Learning
Under conditions of limited labeled data,
few-shot learning and transfer learning have
become essential techniques. Vinyals et al. [17]
introduced matching networks to achieve
effective classification with few samples. Finn et
al. [18] proposed the MAML method, which
learns well-initialized weights for rapid
adaptation to new tasks.
In sports, Liu et al. [19] applied transfer learning
to professional sports action recognition. Zhao et
al. [20] proposed a hierarchical meta-learning
framework that learns evaluation standards from
a few demonstration actions. These studies
provide an important foundation for designing a
tennis action evaluation system under few-shot
conditions.

3. Hybrid Perception Attention Network
(HPA-Net)

3.1 Network Architecture Overview
To meet the specific requirements of tennis
forehand action recognition and evaluation, we
propose the Hybrid Perception Attention
Network (HPA-Net). This network adopts an
encoder-decoder structure, integrating
innovative attention mechanisms and few-shot
learning strategies. HPA-Net consists of four
core modules:
Spatiotemporal Feature Encoder: A 3D
convolution-based feature extraction network to
capture basic spatiotemporal features of actions.
Hybrid Perception Attention Module: Combines
spatial and temporal attention to enhance the
perception of critical technical aspects.

Figure 1. Hybrid Perceptual Attention
Network (HPA-Net) Architecture

Cross-Scale Fusion Module: Integrates
multi-scale features to improve the recognition
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of various granular details in actions.
Dynamic Scoring Decoder: Adapts scoring
standards based on the player's skill level to
generate targeted evaluation results.

3.2 Spatiotemporal Feature Encoder
The spatiotemporal feature encoder employs an
improved 3D-ResNet structure with the
following optimizations:
Lightweight Design: Replaces standard 3D
convolutions with depthwise separable 3D
convolutions, reducing parameters from 33.6M
to 11.8M.
Skeleton-Guided Strategy: Introduces human
skeleton information as auxiliary input to
enhance sensitivity to key joint movements.
Multi-Sampling Rate Processing: Designs a
multi-sampling rate strategy to apply higher
sampling rates to key stages of tennis strokes.

3.3 Hybrid Perception Attention Module
The Hybrid Perception Attention Module, the
core innovation of this study, comprises three
sub-modules:
Spatial Attention: Focuses on key areas of tennis
strokes (e.g., racket hand, elbow, shoulder, and
center of gravity). Unlike general attention
mechanisms, we introduce prior
knowledge-guided attention seed points to
ensure the network focuses on critical technical
regions.
Temporal Attention: Captures key moments in
tennis strokes (e.g., impact and follow-through
phases) using 1D convolutions and self-attention
layers to generate temporal attention weights.
Adaptive Fusion: Automatically adjusts the
weights of spatial and temporal attention based
on the characteristics of the input action. For
example, spatial layout is emphasized during
preparation, while temporal precision is
prioritized during impact.

3.4 Cross-Scale Fusion Module
Tennis strokes involve technical details at
different scales, from macroscopic body posture
to microscopic wrist movements. The
Cross-Scale Fusion Module achieves
comprehensive feature capture through:
Multi-Scale Feature Extraction: Extracts features
at different encoder layers to form a multi-scale
feature set.
Feature Recalibration: Uses adaptive pooling to
align features of different scales to a uniform
dimension.

Cross-Attention Fusion: Employs cross-attention
mechanisms to enhance interactions between
features at various scales.

3.5 Dynamic Scoring Decoder
Traditional action evaluation models typically
use fixed standards, making it difficult to cater
to players with varying skill levels. The
Dynamic Scoring Decoder achieves
personalized evaluation through:
Skill Level Classifier: Identifies the player's skill
level (beginner, intermediate, advanced).
Multi-Standard Scoring Generation: Sets
different scoring priorities for each skill level
(e.g., beginners focus on basic posture, while
advanced players emphasize power and
explosiveness).
Adaptive Weight Synthesis: Dynamically
combines scores from different standards based
on the skill classification results.

3.6 Few-Shot Learning Strategy
To address the scarcity of professional tennis
data, we adopt a prototype-based few-shot
learning strategy:
Prototype Representation Learning: Establishes
prototype representations for each standard
technique using a few expert demonstration
actions.
Similarity Measurement: Recognizes and
evaluates actions by calculating the similarity
between test samples and prototype
representations.
Progressive Fine-Tuning: Updates the model
with new data using a progressive fine-tuning
strategy, balancing new knowledge acquisition
and old knowledge retention.

4. Experiments and Evaluation

4.1 Datasets and Metrics
Experiments were conducted on three datasets:
Public Dataset: Forehand stroke clips (389) from
the TenniSet [21] dataset, split 7:3 into training
and test sets.
Professional Dataset: High-quality forehand
demonstration videos from 15 professional
players, collected in collaboration with the
national tennis team (150 clips).
Self-Collected Dataset: Forehand videos from
amateur players (20 beginners, 25 intermediates,
15 advanced), totaling 500 clips with expert
technical scoring annotations.
Metrics include:
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Action Recognition Accuracy (ACC):
Proportion of correctly recognized forehand
subtypes.
Posture Overlap (POS): Similarity to standard
action postures (higher is better).
Technical Score Error (TSE): Average absolute
error between system scores and expert scores

(lower is better).
Computational Efficiency (FPS): Frames
processed per second to evaluate real-time
performance.

4.2 Experimental Results
Recognition accuracy.

Table 1. Compares the Accuracy of HPA-Net with State-of-the-Art Action Recognition Models.
Model TenniSet Test Set Professional Dataset Self-Collected Dataset Parameters (M)
I3D [4] 86.2% 89.3% 82.1% 25.0
TSN [5] 84.5% 87.5% 80.6% 23.9
SlowFast [13] 89.1% 92.0% 85.7% 32.9
TRN [22] 87.3% 90.1% 83.2% 18.3
HPA-Net 94.3% 95.8% 91.2% 11.8
Shown in Table 1, HPA-Net achieved
significantly higher recognition accuracy across
all datasets, particularly on the self-collected
dataset (+5.5%). Additionally, HPA-Net has the
smallest parameter count, demonstrating its
efficiency.
Posture evaluation.
Table 2. Presents Results on Posture Overlap

and Technical Score Error.
Model Posture Overlap

(POS ↑)
Technical Score
Error (TSE ↓)

C3D-LSTM [23]72.3% 1.83
ST-GCN [24] 78.5% 1.45
DTW-CNN [16] 82.1% 1.21
ASTA [25] 85.4% 0.98
HPA-Net 91.2% 0.64
Shown in Table 2, HPA-Net achieved a
posture overlap of 91.2%, outperforming the
closest competitor by 5.8 percentage points.
The technical score error of 0.64 is markedly
lower than other methods.
Ablation Study

Table 3. Illustrates the Contribution of
Different Attention Components to Model

Performance.
Model Variant Recognition

Accuracy
(ACC)

Posture
Overlap
(POS)

Base Model (No Attention) 85.7% 79.3%
+ Spatial Attention 89.6% 84.5%
+ Temporal Attention 90.3% 85.2%
+ Hybrid Attention
(Non-Adaptive)

92.8% 88.7%

+ Hybrid Attention
(Adaptive)

94.3% 91.2%

Shown in Table 3, results confirm that the hybrid
perception attention mechanism significantly
improves performance, with adaptive fusion
outperforming non-adaptive fusion.

The superior performance of adaptive fusion
stems from its ability to dynamically adjust to
different phases of tennis forehands. During
preparation, the system prioritizes spatial
elements (positioning and grip), while during
impact and follow-through, it emphasizes
temporal features (timing and acceleration). For
topspin forehands, our analysis shows the model
allocates 65% weight to spatial attention during
preparation but shifts to 72% temporal attention
during impact. This dynamic adjustment enables
more precise recognition of technical nuances
and demonstrates greater robustness to
variations in player styles, accommodating both
Eastern grip techniques and modern
semi-Western variations through appropriate
balancing of spatial and temporal features.
Few-Shot Learning
HPA-Net achieved 85.3% recognition accuracy
with only 3 samples per class and 90.1% with 5
samples, significantly outperforming baseline
models under similar conditions (71.2% and
79.5%, respectively).
Computational Efficiency
HPA-Net achieved 28–33 FPS on mobile
devices, meeting real-time feedback
requirements. Memory usage was limited to
325–378 MB.

4.3 User Study
A six-week user study involving 60 tennis
enthusiasts demonstrated significant
improvements in technical indicators for the
experimental group: forehand accuracy
improved by 35.8% (control group 19.2%),
stroke speed by 27.3% (control group 16.5%),
and technical consistency by 41.2% (control
group 22.8%). These results confirm the
system's effectiveness in accelerating skill
improvement.
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5. Conclusion and Future Work
This study proposes the Hybrid Perception
Attention Network (HPA-Net), an innovative
algorithm designed for tennis forehand action
recognition and evaluation. By integrating
spatial and temporal attention mechanisms with
few-shot learning strategies, HPA-Net achieves
precise action recognition and evaluation.
Experimental results demonstrate its superiority
in accuracy, evaluation precision, and
computational efficiency. User studies further
validate its effectiveness in real-world training.
Despite its strong performance, HPA-Net has
several limitations. The model is specialized for
forehand analysis and requires significant
modifications for other tennis techniques.
Performance degrades with lower-quality video
inputs (below 720p/30fps), showing a 12.3%
accuracy drop with smartphone recordings in
poor lighting. The system has limited capability
in contextualizing strokes within tactical
gameplay, and its few-shot learning approach
still depends on carefully selected exemplar
demonstrations for initial setup.
Future work will extend the system to other
technical actions, explore multimodal perception
enhancements, and develop more personalized
training plan generation systems.
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