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Abstract: Looking at the complex face of
multi-dimensional optimization problems,
traditional optimization techniques face the
dual limitations of efficiency and accuracy.
This experiment aims to improve the
execution level of high-dimensional
optimization algorithms through the Bayesian
optimization approach. It integrates
multi-scale modeling, refined sampling
algorithms, improved kernel function
construction and calculation speed
optimization methods, and conducts an
empirical analysis of the optimization effect of
SVM algorithm parameters on the MNIST
dataset. Bayesian optimization significantly
enhances the efficiency and classification
accuracy of the algorithm in
multi-dimensional parameter space search.
The accuracy of the optimized SVM classifier
climbs to 97.2%. Empirical research confirms
that Bayesian optimization shows excellent
performance in high-dimensional
optimization tasks. In resource-limited
computing situations, it is an instant and
efficient parameter optimization solution.
Future research will focus on exploring the
core secrets of reducing computational
complexity and extending the application
boundaries to the field of multi-dimensional
machine learning.
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1. Introduction
In the multi-dimensional universe, the
optimization dimension range is wide and the
exploration space is huge and complex. Such
problems put forward a high threshold for the
efficiency and accuracy of traditional
optimization algorithms. To break through this
dilemma, Bayesian optimization, a global
optimization method supported by probability

models, occupies a core position in dealing with
high-dimensional optimization problems [1] .
Bayesian optimization uses historical data to
build a prediction model matrix, relies on
posterior probability to evaluate the best solution,
reduces the iteration cycle, and realizes efficient
search. It is particularly good at solving
optimization challenges that are computationally
intensive. Even if multi-dimensional problems
are complicated, Bayesian optimization also
shows its excellent performance advantages.
Complex high-dimensional optimization tasks
pose certain challenges to it, especially in the
convergence rate of the algorithm, sample
utilization efficiency and adaptive adjustment
performance. The core of optimizing the
Bayesian optimization algorithm lies in the
innovative breakthroughs in its improvement
path. This research plan uses Bayesian theory as
an analytical tool to build a high-dimensional
optimization algorithm system with strong
adaptability and excellent performance. It adopts
a cross-scale architecture, refined data collection
strategy, innovative kernel function design and
ways to improve computational efficiency. This
study focuses on optimizing the Bayesian
optimization algorithm to enhance its
expressiveness in the field of high-dimensional
space optimization. The research results reveal
new solutions to complex optimization problems
and expand the in-depth exploration and
implementation of Bayesian optimization in
application scenarios.

2. Overview of Bayesian Model Basics and
High-Dimensional Optimization Algorithms

2.1 Bayesian Model Basics
Based on the Bayesian methodology, the
interdependence and update trajectory of time
series variables can be characterized by a
dynamic Bayesian network model, as shown in
Figure 1. The model emphasizes the evolution
trajectory of state variables tx and observation
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variables ty , which are all constrained by
previous conditions and are adjusted by adjusting
the parameters of related processes and
monitoring noise. The values of t

p and
t
1 reflect the statistical center values of process

fluctuations and measurement errors. These
means are not fixed, but are 1t

p flexibly
adjusted based on the mean data of the previous
period ( and ) and the iterative correction of the
probability model parameters η and  1t

l [2] .
The system has the ability to respond
immediately to new data and adjust the
prediction strategy in real time to match the latest
data. The red and blue arrows reveal the core
dependencies and loops of the Bayesian model.
The red arrows reveal that the state variables
tx are directly t

p affected by the mean of
process noise, which has a chain effect on
subsequent observations. The blue arrows reveal
ty how the observations t

1 implement reverse
feedback regulation on the model through the
mean of observation noise, and then act on the
prediction state transition of the next time step[3].

Figure 1. Schematic Diagram of the Bayesian
Model

2.2 Overview of High-Dimensional
Optimization Problems
High-dimensional optimization problems
frequently appear in many high-tech frontier
fields, especially in complex scenarios with many
input variables and parameters. The challenge
faced by such problems is that their complexity

increases sharply with the increase of dimensions,
inducing the so-called "dimensional dilemma". In
the optimization process, the scope of the space
to be mined grows exponentially rapidly.
Traditional optimization techniques encounter
difficulties in mining the global optimal solution.
High- dimensional data sets often have sparse
characteristics. This requirement is aimed at
achieving statistical significance and preventing
model overfitting, and must rely on a large
information base [4] . In practical situations, in
multidimensional optimization scenarios, the
interaction between parameters is intricate, and
the parameter interaction effect leads to obvious
nonlinearity of the objective function, multiple
peaks, and local optimal solutions. This
undoubtedly increases the difficulty level of
exploring the global optimal solution, which also
makes the optimization process more dependent
on initial settings and parameter selection. In
high-dimensional environments, gradient descent
and its variants are often limited in performance.
They run the risk of falling into the local
minimum zone around the initial point and
failing to reach a better global minimum point.
The computational cost of processing
high-dimensional optimization tasks is huge, and
the computational requirements are often huge,
requiring sufficient computing resources . This
poses an insurmountable obstacle at the practical
operation level within the limits of limited
resources [5] .

2.3 Application of Bayesian Optimization in
High-Dimensional Problems
Figure 2 reveals the practical path of
implementing Bayesian optimization strategies in
multidimensional space problems, deep mining
and system optimization of complex data groups.
In the information preprocessing stage, the data
set is divided into stable parameters and variable
dimensions. The two sets of data each adopt
dimensionality reduction technology to relieve
computational pressure and improve algorithm
operation efficiency. At this stage, information
encoding and decoding technology is
implemented, data architecture is streamlined,
core content is screened, and Bayesian
optimization methods are adopted for the
screened data set. The encoded established
parameters and variable parameters are analyzed,
the optimal solution tracking path driven by the
Bayesian principle, the extreme point of the
objective function, the encoded data is imported
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into the Bayesian optimization algorithm for
model parameter optimization, and the
parameters are adjusted to achieve the
established goals. The secondary encoding link
involving the target value is used to project the
optimized data results into the original data
space.
The advantages of Bayesian optimization
technology are obvious. It relies on probability
models to estimate the effects of parameter
adjustments and intelligently adjusts parameter
combinations based on predicted data. This
technology is unique in multi-dimensional
optimization problems. Relying on its
sophisticated navigation strategy, it can easily
navigate through the vast search field and
achieve global optimization goals, not just the
local optimal level.

Figure 2. Application of Bayesian
Optimization in High-Dimensional Problems

3. Improvement of High-Dimensional
Optimization Algorithm Based on Bayesian
Model

3.1 Introducing Multi-Scale Modeling
The adoption of multi-scale modeling aims to
strengthen the approach to scale-differentiated
optimization problems. In practical scenarios, the
adjustment of problem parameters leads to large
fluctuations in the magnitude of the output results.
Bayesian optimization strategies for such
multi-level features often face the challenge of
capturing their deep characteristics. In order to
solve this problem, a multi-level kernel function
construction framework is implemented to
optimize the Bayesian optimization mechanism
and implement multi-scale Gaussian kernel
technology:
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Among them, dl represents the length
measurement scale value of dimension d. The
kernel function can achieve differentiated
matching in each dimension. This setting helps
the algorithm to achieve more refined mining in

dimensions with large parameter influence. In
other dimensions, the search span is wide and
boundless. The adoption of dynamically adjusted
learning rate or intelligently optimized ldl
_parameter strategy can further enhance the
performance and accuracy of the algorithm in
coping with multi-dimensional and complex
optimization challenges.

3.2 Optimization of Sampling Strategy
The improvement of the refined sampling
method is the key node for the performance leap
of Bayesian optimization. In the established
paradigm of Bayesian optimization, the generally
adopted method is to use the maximization of
expected returns as the benchmark of the
sampling strategy, the benchmark node EI, and
its mathematical formula is written as

       0,max * xfxfExEI  (2)
Among them,  *xf is the best value at this
stage, trying to innovate the strategy, the upper
confidence range can be cited, and the UCB
criterion is used as the decision basis for
selecting new samples:

     xxxUCB   (3)
Among them,  x and  x respectively
reveal the value and fluctuation range of the
posterior expectation of the point.  As the key
regulatory factors for adjusting the balance
between exploration and utilization, the 
coefficients are flexibly changed. In the initial
stage of the algorithm, it prefers to deeply
analyze the depth and breadth, potential,
connotation and details of (high  value) . In
the convergence stage, it prefers to use smaller
 values. The integration of local optimal
solution search and gradient-driven technology
can greatly enhance the grasp of exploring the
global optimal solution in the complex
hyper-dimensional search domain.

3.3 Model Improvement and Performance
Acceleration
On the Bayesian optimization path, improving
the model operation efficiency is a top priority.
An innovative optimization method is to
implement a sparse Gaussian process model and
a comprehensive pre-training model. The
traditional Gaussian process model is under
tremendous computational pressure when dealing
with large-scale data sets. It is necessary to
perform an inverse transformation on the
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covariance matrix of the entire data set. The time
complexity of this calculation process is  3nO
the cubic order, and the total number of data
points is n. By screening the core sample group,
the Gaussian process of the entire data set is
approximated, which significantly reduces the
computing requirements. To achieve this goal,
strategies such as selecting a subset of specific
points of interest M and using induction points
can be adopted. This mathematical formula
shows:

       '1' ,,,, xMkMMkMxkxxksparse
 (4)

The integration of fast Fourier transform and
numerical linear algebra strategies greatly
improves the model's computational efficiency,
especially in the iteration and estimation stages.
This adjustment significantly improves the
processing speed without reducing the prediction
accuracy, and adapts the algorithm to adapt to
real-time and large-scale application scenarios.

3.4 Adaptive Adjustment Strategy
In the Bayesian optimization framework, the
balance law between exploration and utilization
and the resilience strategy are extremely critical.
A strategy is implemented to adjust the
exploration parameters in real time. The κ
parameter setting adopted by the UCB strategy
adjusts the κ value range in a timely manner
according to the performance response. A
flexible adjustment mechanism can be
constructed to adjust the value of the κ parameter
in real time based on the changing trend of the
objective function value in continuous iterations.
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The objective function values 1tf and tf of the
previous and subsequent iterations  act as key
parameters for sensitivity control. Using this
method, if the change range of the objective
function in consecutive rounds of iterations is
negligible,  the exploration range should be
increased; the  parameter should be reduced
to improve the application efficiency. With the
help of machine learning, the potential
consequences of parameter adjustment on the
optimization results can be proactively evaluated.
With the help of online resources, the model
parameters can be corrected in real time to
enhance the adaptation speed and
synchronization accuracy to the changing trend
of the objective function.

4. Improved Performance Evaluation

4.1 Experimental Design and Dataset
Selection
This study attempts to enhance the execution
quality of multidimensional optimization
algorithms with the help of Bayesian
optimization, and introduces the public domain
MNIST handwritten digit recognition dataset as
an experimental sample. This dataset includes
sixty, zero training samples, and zero thousand
samples. Each data sample consists of a
handwritten digit image with 28 rows and 28
columns of pixels, covering the digits zero to
nine.
Trying to explore the practical application
effectiveness of Bayesian optimization strategy
in multi-dimensional parameter space, the
experimental steps need to be based on several
key basic parameters:
Objective function: The classification accuracy
of the SVM classifier is used as the core
parameter of the optimization objective function.
Parameter space: fine-tune the core control
factors of SVM: Table 1 regularization factor c
and kernel function adjustment weight, parameter
setting limits: c : 0.001 to 1000, logarithmic
scale distribution,  : 0.100 million to 1 billion,
logarithmic scale distribution.
Optimization algorithm: A Bayesian optimization
process based on a multi-scale Gaussian kernel is
performed to achieve parameter optimization.
Iterations: Hundreds of iterations will be carried
out to continuously select the parameter
combinations with the most room for
improvement in efficiency to drive model
training and verification iterations.

Table 1. Key Parameter Settings of the
Experiment

parameter scope describe

c 0.001-1000
Regularization parameter

for SVM, log-scale
distribution

 0.0001-10 SVM kernel parameters,
log-scale distribution

Iterations 100
The total number of

iterations during Bayesian
optimization

Dataset MNIST Handwritten digit
recognition dataset

This paper discusses the actual application effect
and execution efficiency of the Bayesian
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optimization method in high-dimensional
parameter adjustment, aiming to explore the
potential application value of Bayesian
optimization in machine learning tasks equipped
with clear objective functions and complex
parameter spaces, and selects support vector
machine as a classifier for empirical analysis.

4.2 Algorithm Performance Analysis
The C and γ parameters of SVM were optimized
with the help of Bayesian optimization
technology, and the model's expressiveness was
comprehensively analyzed. The empirical study
of the MNIST dataset showed that Bayesian
optimization exhibited excellent manipulation
skills when dealing with high-dimensional
parameters, as shown in Table 1. Figure 3
intuitively shows the steady growth trajectory of
SVM classification accuracy after every 10
iterations, showing the improvement level of
algorithm efficiency:
Table 2. Performance Results of Optimization

Algorithms
Iterations Accuracy (%)

10 82.3
20 86.7
30 89.4
40 91.2
50 93.1
60 94.6
70 95.3
80 96.1
90 96.7
100 97.2

Figure 3. Visualization of the Performance
Results of the Optimization Algorithm

As the cumulative duration of the iteration cycle
increases, the effect of the SVM classifier
steadily increases. This progress mainly relies on
the precise exploration of Bayesian optimization
in the parameter field, the unremitting pursuit of
the precise matching of C and γ, and the
enhancement of the accuracy of the
high-dimensional space classifier. Comparing the

applicability analysis of Bayesian optimization
with conventional grid search and random search
methods, in the field of geometric computing
resource allocation, Bayesian optimization
greatly improves the optimization rate and
greatly reduces the number of iterations required
to achieve similar performance. After hundreds
of rounds of iterative tests, the highest accuracy
of the grid search strategy is fixed at 94.5%, and
the random search is refreshed to a new high of
95.1%. The accuracy of Bayesian optimization
has achieved a new breakthrough of 97.2%. This
discovery highlights the excellent performance
and practical application value of Bayesian
optimization in dealing with complex parameter
domains and multidimensional data sets.

5. Conclusion
This study used the Bayesian optimization
strategy to implement performance evaluation
and optimization upgrades for multi-dimensional
optimization algorithms, achieving significant
breakthroughs. In the face of machine learning
models with complex parameter configurations,
if the support vector machine architecture is
adopted, the parameter settings can be accurately
adjusted and improved, and the path can be
efficiently explored in the multi-dimensional
space, the model accuracy can achieve a
qualitative leap. Empirical analysis shows that
Bayesian optimization significantly reduces the
frequency required for iterations, and each round
of iteration effectively promotes performance
leaps, greatly reduces optimization time, and
significantly breaks through the results of
traditional methods. The expansion space of
Bayesian optimization in the field of
multi-dimensional optimization needs to be
further explored. Although existing research has
revealed its huge potential, how to further reduce
computational complexity and enhance the
universality and flexibility of algorithms
continues to occupy the core issues at the
forefront of academic research. Exploring the
integration path of Bayesian optimization and
deep learning strategies may open up a new path
to solve the problem of multi-dimensional
optimization. This investment will help Bayesian
optimization technology to move towards a
deeper expansion in a broader field.
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