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Abstract: With the intelligent development of
the power system, the main transformer, as a
key piece of equipment in the power system,
the health of its operating state directly
affects the stability of the power grid. Due to
its complex structure and harsh operating
environment, the core clamping parts of the
main transformer are prone to defects such as
loosening, cracking and rusting. The
traditional defect identification methods have
obvious deficiencies in terms of accuracy and
efficiency. To this end, this paper proposes an
intelligent recognition method based on the
collaborative strategy of large and small
models. By combining the rapid response
capability of small models on the on-site side
with the high-precision analysis capability of
large models in the cloud, an efficient and
intelligent main transformer core clamping
defect recognition system is constructed.
Experiments show that this method
significantly improves the response speed and
system practicability while ensuring the
recognition accuracy.
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1. Introduction
The main transformer is a key device in the
power system, and the reliability of its operation
directly determines the safety and stability of the
transmission and distribution system. As an
important mechanical structure in the main
transformer, the core clamping, if it has defects
such as loosening, cracking and rusting, will not
only lead to increased vibration and noise, but
also may cause serious malfunctions, shorten the
service life of the equipment, and even cause
power outages. Therefore, it is of great

significance to conduct efficient and accurate
fault identification for the core clamps of the
main transformer.
Traditional fault detection techniques mainly
include methods such as thermal model
prediction, frequency response analysis, and
partial discharge detection, which can provide
multi-dimensional references for the operating
status of transformers [1,2]. However, such
methods usually require professional equipment
and manual interpretation, have slow response
speeds and poor real-time performance, and are
difficult to meet the dual requirements of
modern intelligent operation and maintenance
for high efficiency and accuracy.
In recent years, artificial intelligence and
machine learning methods have received
extensive attention in the field of transformer
fault diagnosis. The deep learning method based
on deep belief network (DBN) and BP neural
network combined with DGA features has been
proven to have a good effect in fault type
identification. Furthermore, Zhang et al. [3]
proposed a DGA model based on DBN, which
achieved automatic mapping from characteristic
gases to fault types and had better recognition
rates and generalization capabilities. Beyond
deep learning, various machine learning and
hybrid methods have also been widely explored.
For example, Wu et al. [4] introduced residual
neural network combined with frequency
response data to achieve accurate location of
winding faults, Lei et al. [5] adopted the
cloud-edge collaborative defect detection
method based on Yolo network and incremental
learning. Furthermore, Li et al. [6] proposed a
hybrid model combining Swin Transformer and
convolutional neural network for surface defect
detection. The experimental results show that
this method significantly improves the detection
accuracy and robustness on multiple public
datasets.
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Although the above-mentioned methods perform
outstandingly in terms of diagnostic accuracy,
they generally have limitations such as high
deployment costs, large computing latency, and
lack of real-time response capabilities. In the
operation and maintenance of power substation
equipment, on-site inspection of equipment
requires rapid response and immediate handling.
Therefore, deploying computing capabilities on
the edge side has become a trend. Edge
Intelligence and cloud-edge collaborative
architecture are gradually emerging, dedicated to
pushing AI to the edge of the network and
enhancing the timeliness of inference and the
efficiency of resource utilization. In recent years,
the Transformer architecture has demonstrated
strong potential in emphasizing long-term
dependencies and global feature modeling, and
is gradually being integrated into defect
detection and sequence analysis tasks. For
example, "Defect Transformer" combines the
CNN and Transformer architectures to achieve
collaborative modeling of local and global
features in the surface defect detection task,
improving the detection efficiency and accuracy.
The industrial manufacturing field has also
proposed injecting the Transformer-based
attention mechanism into fault detection tasks,
emphasizing its advantages in spatio-temporal
structure modeling [7-10].
In conclusion, the existing literature indicates
that although traditional monitoring technologies
are mature, they have a slow response. Deep
learning and hybrid models perform well in
terms of diagnostic accuracy, but they are mostly
used in cloud or experimental environments,
with high deployment costs. The combination of
edge intelligence and lightweight models has the
advantage of real-time on-site response. The
Transformer architecture offers superior global
feature capture capabilities. It is precisely
against this backdrop that this paper proposes a
defect identification method based on the
collaborative strategy of large and small models:
deploying small models at the edge for rapid
initial judgment, and deploying large models in
the cloud for in-depth analysis. The
collaboration between the two takes into account
both efficiency and accuracy, thereby providing
a systematic and practical new path for the
intelligent defect identification of main variable
core clamps.

2. Design of the Collaborative Strategy

Framework for Large and Small Models
With the rapid development of artificial
intelligence technology in the field of power
equipment condition monitoring, how to
improve the efficiency of model deployment
while ensuring recognition accuracy has become
the core issue in building practical intelligent
diagnostic systems. Traditional large models
(such as ResNet, Transformer, etc.) have strong
capabilities in feature extraction and semantic
modeling, and can accurately identify complex,
fuzzy, and multi-type defects. They are suitable
for task scenarios with variable shapes and
complex lighting, such as main transformer core
clamping pieces. However, such models have
high computational complexity and high
requirements for computing power and storage
resources, which is not conducive to deployment
at on-site terminals. Relatively speaking, small
models (such as MobileNet, ShuffleNet,
EfficientNet-lite, etc.) have the advantages of
light structure and fast response, and are suitable
for deployment on edge devices for real-time
judgment. However, it is limited by the number
of parameters and the depth of the network, and
its recognition accuracy is relatively low when
dealing with high-complexity or multimodal
defects. Therefore, this paper proposes a large
and small model collaboration strategy based on
"cloud-edge collaboration", integrating the
advantages of both sides through the approach of
"real-time early warning of small models on the
edge side + in-depth analysis of large models in
the cloud", taking into account both response
speed and recognition accuracy, to construct an
intelligent diagnosis system for transformer
defects with practical value.
This collaborative architecture mainly consists
of three core modules: edge perception and
recognition, initial judgment of small models,
and cloud-based analysis and decision-making.
Among them, the edge end is deployed in the
on-site transformer environment, integrating
high-definition industrial cameras and small
models. It can achieve real-time collection and
preprocessing of core clamping images, and
quickly classify and initially alarm common
defects such as clamping rust, loosening, and
cracking. The response time is controlled within
50ms, meeting the requirements of on-site
inspection. Once the edge recognition result
reaches the warning threshold or the confidence
level is insufficient, the image data and judgment
information are immediately reported to the
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cloud. The cloud system has stronger computing
power support and storage capacity, runs
high-capacity deep models, conducts
fine-grained feature extraction, multi-category
reasoning and historical record comparison on
uploaded images, and outputs diagnostic
suggestions and maintenance priorities based on
the fault mode library. The cloud can also
synchronize the optimized model weights or
recognition strategies back to the edge through a
lightweight protocol, enhancing the subsequent
inference effect and enabling online fine-tuning
of small models.

Figure 1. The Collaborative Working
Architecture of Large and Small Models

As shown in Figure 1, the core advantage of this
strategy lies in hierarchical modeling and clear
task division: small models efficiently cover the
primary judgment tasks of on-site equipment,
ensuring the timeliness of detection. Large
models conduct in-depth analysis of global
features to enhance recognition accuracy. The
two achieve result fusion and information closed
loop through communication mechanisms,
thereby taking into account both system
response efficiency and diagnostic reliability. In
addition, this strategy supports modular
deployment and dynamic updates, and has good
scalability and adaptability, capable of adapting
to the main transformer operation environment
under different substations and hardware
conditions. Through the collaborative
mechanism of large and small models, the
system can not only promptly detect and
precisely locate the defects of the core clamping
pieces of the main transformer, but also
gradually accumulate defect samples and
optimize the diagnostic model during long-term
operation and maintenance, ultimately building a
new paradigm for transformer operation and
maintenance oriented towards intelligent
maintenance.

3. Construction and Optimization of Defect
Recognition Models

3.1 Structural Design of Small Models and
Large Models
When constructing the defect recognition model
for the core clamping of the main transformer,
this paper adopts a collaborative design strategy
of large and small models: the small model on
the edge side is used for real-time detection, and
the large model in the cloud is used for
high-precision analysis. The small model part
selects MobileNetV2 as the basic architecture,
which takes into account both lightweight and
feature extraction capabilities. Its core adopts a
Depthwise Separable Convolution structure,
significantly reducing the number of model
parameters. Specifically, the computational cost
of a standard convolution is:

������������ = �� ∙ �� ∙ � ∙ N ∙ �� ∙ �� (1)
Here, �� represents the size of the convolution
kernel, � is the number of input channels, �
is the number of output channels, and �� is the
size of the feature map. The computational cost
of depth-separable convolution is:
��������ℎ���� = �� ∙ �� ∙ � ∙ �� ∙ �� + � ∙ � ∙ �� ∙ ��(2)
This can reduce the number of parameters to
approximately 1/9 of the original model and is
suitable for deployment on edge computing
platforms such as Jetson Nano and Raspberry PI.
Meanwhile, to make up for the deficiency of the
small model's ability to abstract high-order
features, the edge model introduces the SE
attention mechanism. By adaptively adjusting
the weights of the feature channels, it enhances
the discriminative features, enabling the model
to achieve high recall rate recognition even when
the input image resolution is limited and the
defect size is small.
For the large model part, the improved Swin
Transformer is selected. Its core design idea is
the window-based Multi-head self-attention
computing mechanism (W-MSA) based on local
Window partitioning, which significantly
reduces the global computational complexity.
The original computational complexity of the
self-attention mechanism of the Transformer
architecture is:

O(n2 ∙ �) (3)
Here, � represents the number of input tokens
and � is the feature dimension. Swin
Transformer adopts the sliding window
partitioning strategy, restricting the attention
calculation within the window range, and the
complexity is reduced to:

O(� ∙ W2 ∙ �) (4)
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Here, � represents the number of Windows and
� represents the size of the Windows. This
strategy enhances scalability and training
efficiency while maintaining the receptive field
of the model. The large model further achieves
cross-regional feature interaction through
multi-scale Patch merging and cross-window
attention module (Shifted Window), effectively
identifying tiny clamping defects in complex
backgrounds, such as loose screws and metal
erosion.

3.2 Training Strategies and Optimization
Mechanisms
For the above-mentioned models of different
sizes, this paper adopts different training
strategies to adapt to their deployment goals. The
small model adopts the end-to-end supervised
learning approach, and the Loss function selects
the combined form of Cross Entropy Loss and
Focal Loss to enhance the sensitivity to the
imbalanced data between classes:

ℒfocal =− ��(1 − ��)�log (��) (5)
Here, �� represents the predicted probability of
the model for the true category, � controls the
weights of the difficult and easy samples, and ��
is the balance factor. This loss function is
particularly suitable for the common "few
defects vs a large number of normal" sample
distribution at the edge. During the training
process, data augmentation strategies (such as
rotation, mirroring, and luminance perturbation)
are adopted to enhance the model's robustness
against on-site image interference. To compress
the model volume, deep quantization (8-bit) and
pruning techniques are adopted to keep the
model's running time on embedded hardware
within 50ms.
In the training phase of large models, contrastive
learning mechanisms and multi-label supervision
frameworks are introduced. The labeled
multi-dimensional defect labels (such as
"corrosion + offset", "rust + loosening", etc.) are
utilized to enhance the model's discriminative
ability. Its loss function is in the combined form
of multi-label Binary Cross Entropy with Logits
and cosine similarity loss:

ℒ =
�=1

�
 � ��log (��) + (1 − ��)log (1 −

��) + �(1 − cos (�1, �2)) (6)
The former term is the standard multi-label loss,
and the latter term is the cosine similarity loss of
the sample embedding vectors �1, �2 , which is

used to enhance the separability of the feature
space. The training adopted ImageNet
pre-training weight initialization, combined with
transfer learning to reduce convergence time.
Finally, fine-tuning was performed on the
transformer defect image dataset (a total of 4800
images), and the final recognition accuracy of
the Top-1 model reached 97.8%.
By constructing an identification framework of
"rapid detection of small side models + in-depth
optimization of large cloud models", and in
combination with carefully designed structures,
loss functions and training strategies, this paper
has achieved the deployment of a high-precision,
high-efficiency and low-latency main
transformer core clamping defect identification
system, providing strong support for the
intelligent condition-based maintenance of
transformers.

4. Experiments and Results
To verify the effectiveness and engineering
applicability of the proposed defect
identification method for main transformer core
clamps based on the collaborative strategy of
large and small models, this paper designs a
systematic experimental process covering
multiple links such as model construction,
performance testing, deployment evaluation, and
on-site application feedback. The entire
experiment is divided into two stages: the first
stage focuses on the evaluation of model
accuracy and efficiency, while the second stage
pays attention to the application effect and
reliability verification of the model in a real
substation environment.

4.1 Model Performance Testing and
Comparative Analysis
The experimental data mainly come from the
on-site inspection images provided by several
substations of State Grid Corporation of China,
totaling 9,800 images, covering multiple
working conditions and typical defect types of
the core clamping of the main transformer,
including six major types of faults: loosening,
rusting, detachment, fracture, displacement and
surface contamination. The data was manually
labeled and divided into a training set (7,840
pieces), a validation set (980 pieces), and a test
set (980 pieces). During the model training
process, the small model selects the lightweight
convolutional neural network MobileNetV3 and
is deployed on the edge terminal (RK3568
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embedded AI device). The large model adopts
the Swin Transformer with balanced structure
and performance, which runs on the NVIDIA
A100 cloud server. The collaborative model is
based on the integration of the two and adopts a
two-stage identification process of "edge
screening and cloud diagnosis".

Table 1. Experimental Performance
Comparison Table

Model Accuracy
rate (%)

Recall
rate
(%)

Inference
delay
(ms)

Model
size
(MB)

Small model
(edge) 87.4 84.1 15 4.2

Large model
(Cloud) 94.2 93 85 120

Collaboration
between large
and small
models

96.5 95.2 40 5.3

Analysis of the Table 1 shows that the small
model has a good real-time response capability
at the edge, with an inference delay of only
15ms. However, due to the limitations of the
number of parameters and the depth of modeling,
there are certain misjudgments and missed
detections in the recognition of complex defects.
By introducing the local window attention
mechanism (Swin Transformer), the large model
significantly improves the recognition accuracy
while maintaining spatial efficiency, achieving
an accuracy rate of 94.2% and a recall rate of
93.0%. However, due to the high requirements
for computing resources, the inference delay is
as high as 85ms, making it unsuitable for direct
deployment in resource-constrained scenarios.
The collaborative model integrates the
advantages of both through a mechanism of
"edge rapid screening + cloud deep recognition":
the edge-end small model periodically processes
the collected images, quickly discovers
suspicious areas and labels them with
lightweight tags; The large model only performs
depth discrimination on the labeled images,
reducing the computational load while ensuring
high recognition accuracy. The final
collaborative strategy achieved an accuracy rate
of 96.5% and a recall rate of 95.2%, which was
much higher than that of any single model.
Meanwhile, the model size is controlled at
5.3MB, reducing the cloud computing burden by
approximately 60%, providing feasible support
for engineering deployment.

4.2 On-site Deployment and Application
Effectiveness
In order to verify the stability and practicability
of the collaborative model in a real environment,
this paper conducted a three-month pilot
deployment experiment at a 110kV substation in
Zhejiang. The deployment of the system consists
of two parts: First, edge AI cameras with
computing capabilities are set up along the
equipment inspection channels to capture images
of core clamps at fixed intervals every day and
initially screen for defects. The second is to
upload the suspicious images to the cloud
platform, where the large model analyzes the
fault type, generates a diagnostic report and
provides handling suggestions. The entire
process is based on a cloud-edge collaborative
architecture, integrating lightweight reasoning
with in-depth understanding, significantly
enhancing the accuracy and response speed of
power equipment condition-based maintenance.
During this deployment process, a total of over
27,000 image samples were processed, and 912
suspected defect images were identified. After
cloud re-inspection, 248 valid defects were
confirmed. The overall false alarm rate of the
collaborative model was controlled within 2.3%,
and it played a timely warning role in three key
equipment operation risk warning events,
successfully avoiding major hidden dangers such
as loose clamping parts and broken conductive
screws, achieving remarkable engineering results.
Meanwhile, the average response time of the
system is controlled within 60 seconds, which is
far superior to the traditional manual inspection
feedback cycle and significantly improves the
operation and maintenance efficiency.
Feedback from on-site operation and
maintenance personnel shows that this
collaborative identification system is easy to
deploy, highly scalable, supports integration with
existing substation SCADA systems and data
platforms, and can achieve unified dispatching
and remote operation and maintenance of
multiple sites. It has good promotion prospects
and application value.

5. Conclusion
This paper focuses on the defect identification of
the core clamping pieces of the main transformer
and proposes an intelligent diagnosis method
based on the collaboration of large and small
models. This method achieves high accuracy and
timeliness in defect recognition by constructing
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a collaborative recognition framework of
lightweight small models and large models with
strong representational capabilities, fully
integrating the advantages of real-time response
at the edge and in-depth analysis in the cloud.
During the model construction process, the
integration of multi-task loss functions and
feature alignment mechanisms has enhanced the
front-end screening capability and overall
diagnostic reliability of small models. The
experimental results show that the collaborative
model outperforms the single model in terms of
accuracy, recall rate and reasoning efficiency.
The accuracy rate reaches 96.5%, and the
reasoning delay remains within the deployable
range, demonstrating engineering practicality. In
the real substation deployment test, the system
successfully identified multiple typical defects,
effectively supporting the equipment
condition-based maintenance tasks and verifying
the practical value and scalability of this
strategy.
Subsequent research will further explore model
distillation, adaptive fusion mechanisms, and
multimodal information introduction strategies
to enhance the system's generalization ability in
multiple scenarios and tasks, providing stronger
technical support for the intelligent operation
and maintenance of power equipment.
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