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Abstract: Civil Structural Health
Monitoring (SHM) faces challenges such as
complex, multi-source, noisy data, and the
difficulty of traditional methods in achieving
efficient, real-time damage identification.
This study explores and validates the
effectiveness of machine learning algorithms
applied in SHM. Firstly, multi-source sensor
data including acceleration and strain from
bridge structures are collected, and Wavelet
Packet Transform (WPT) is used for
denoising and feature extraction. Secondly,
Principal Component Analysis (PCA) is
employed for dimensionality reduction to
obtain key features. Subsequently, machine
learning algorithms such as Support Vector
Machine (SVM) and Random Forest (RF)
are utilized for structural health state
classification and damage localization.
Experiments using monitoring data from an
actual bridge demonstrate that the Random
Forest method achieves damage localization
errors within 1.4 meters and elevates the
average confidence level for damage level
classification to 92%, while SVM exhibits
higher damage detection sensitivity under
small-sample scenarios. The SHM approach
based on multi-source feature fusion and
machine learning algorithms significantly
enhances the accuracy and real-time
capability of damage identification in civil
structures, providing robust technical
support for structural safety management.
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1. Introduction
With the continuous expansion of urban
transportation infrastructure and increasing

service life, civil engineering structures like
bridges face growing challenges regarding
safety and durability. Factors such as
environmental loads, material aging, and
sudden external forces lead to hidden and
complex structural damage evolution. Failure
to identify damage location and severity early
and accurately can result in safety incidents
and significant economic losses. Traditional
SHM methods, when confronted with massive,
multi-source, and noisy monitoring data in
practical engineering, are often constrained by
low feature extraction efficiency, strong
reliance on manual intervention, and poor
real-time performance, making it difficult to
meet the demands of modern civil structural
lifecycle safety management. In recent years,
SHM systems based on various sensors such as
accelerometers and strain gauges have
achieved significant improvements in data
acquisition dimensions and spatiotemporal
resolution. However, efficiently, stably, and
intelligently extracting features reflecting the
intrinsic structural health state from complex
monitoring data remains a core scientific
challenge.
To address these issues, machine
learning-based SHM methods are becoming a
research hotspot in civil engineering.
Compared to traditional methods, machine
learning algorithms demonstrate unique
advantages in handling high-dimensional,
multi-source, and nonlinear monitoring data.
They can automatically uncover latent
correlations within the data and identify
complex damage patterns. By incorporating
signal processing, dimensionality reduction,
and multi-model fusion, these methods
enhance feature discriminability and improve
the accuracy and real-time capability of
damage detection. Particularly in practical
engineering applications, machine
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learning-based SHM technology reduces
manual intervention, enhances system
intelligence, and provides stronger technical
support for active monitoring and safety early
warning of structures like bridges. This
approach not only drives the digital and
intelligent transformation of civil engineering
but also opens new pathways for efficient
maintenance management of complex
engineering structures.
This paper is structured as follows: Section 1
(Introduction) systematically elaborates the
research background, significance, and
difficulties. Section 2 (Related Work) reviews
domestic and international research progress in
relevant fields, analyzing the advantages and
disadvantages of existing methods. Section 3
(Methodology) details the implementation
process of multi-source data acquisition, signal
processing, feature dimensionality reduction,
and machine learning algorithms. Section 4
(Results and Discussion) conducts experiments
based on actual bridge monitoring data and
provides an in-depth discussion on the
method's effectiveness and applicability.
Section 5 (Conclusion) summarizes the paper
and proposes further research directions based
on the findings.

2. Related Work
Structural Health Monitoring (SHM), as an
important research direction in civil
engineering, has received widespread attention
from scholars worldwide. Numerous studies
systematically review this field from
theoretical, methodological, and application
perspectives. Long et al. [1] reviewed existing
research achievements and prospected future
development trends and prospects for
intelligent technologies in civil engineering
SHM. They also deeply discussed the
innovations and challenges brought by the
integration of civil engineering SHM and
intelligent disciplines. Wang [2] reviewed the
basic concepts, key technologies, and
application fields of structural health
monitoring. Digital platforms like BIMBase
integrated sensor data and analysis results,
providing strong data support for engineering
safety. He et al. [3] introduced interdisciplinary
education strategies and discussed the
importance of incorporating multidisciplinary
perspectives into nuclear power plant SHM
education. Weng et al. [4] introduced common

materials and sensing mechanisms for flexible
piezoresistive strain sensors, and summarized
the research status in three aspects: sensing
mechanisms of three typical piezoresistive
principles, sensor structural design and
fabrication methods, and their application in
SHM. Du et al. [5] employed SHM technology
to monitor the structural condition of
composite materials, improving their safety
and reliability, leading to widespread
application in many industries. Flah et al. [6]
discussed the effectiveness of deploying
machine learning algorithms in SHM and
provided a detailed critical analysis of their
application. Gharehbaghi et al. [7] focused on
providing a comprehensive and up-to-date
review of civil engineering structures (e.g.,
buildings, bridges, and other infrastructure).
Han et al. [8] reviewed research on SHM
technologies for civil structures under varying
temperatures. Dong and Catbas [9] outlined the
concepts, methods, and practical applications
of computer vision-based SHM, incorporating
rapidly accumulating relevant literature. Bao
and Li [10] illustrated the principles of the
machine learning paradigm in SHM through
examples and reviewed current challenges and
unresolved issues in the field. Current research
in SHM not only encompasses
multidisciplinary integration and technological
innovation but also continuously expands its
engineering applications, laying a solid
foundation for enhancing the safety and
intelligent management of civil structures.

3. Methodology

3.1 Data Acquisition and Preprocessing
Data acquisition for SHM focuses on an actual
bridge structure, utilizing a distributed
multi-source sensing system to
comprehensively capture structural response
information. Specific sensors include
accelerometers and strain gauges, deployed at
different critical nodes on the bridge girder and
vulnerable locations such as mid-span and
bearings to enable real-time monitoring of
structural vibration and strain states. Sensor
placement follows structural mechanics
analysis results and historical damage
distribution patterns, ensuring sensitivity to
various typical damage signals. During data
acquisition, all sensors operate with
synchronized clocks at a sampling frequency of
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200 Hz, guaranteeing spatiotemporal
consistency and integrity of dynamic response
features. Raw data is often contaminated by
environmental noise, temperature variations,
and equipment drift, necessitating systematic
preprocessing. First, raw signals undergo
detrending and normalization to eliminate
baseline drift and dimensional influences.
Subsequently, Wavelet Packet Transform (WPT)
decomposes the signals at multiple scales,
effectively filtering high-frequency noise and
enhancing damage-related features.
Multi-source data also requires time
synchronization and missing value imputation
to ensure accuracy and completeness for
subsequent analysis.

3.2 Feature Extraction and Dimensionality
Reduction
For the preprocessed acceleration and strain
time history signals, the Wavelet Packet
Transform (WPT) is used to perform
multi-scale decomposition on the signals. After
decomposition, the energy characteristics of
each sub-band are extracted. Let the original
signal be x(t). The energy characteristics of the
i-th sub-band of the N sub-band signals xi(t)
obtained by wavelet packet decomposition are
calculated as follows:

Ei=
t=1

T
 � |xi(t)|2 (1)

where T represents the signal length, and xi(t)
is the amplitude of the i-th sub-band at time t.
These energy features sensitively reflect
changes in the structural dynamic response
across different frequencies, capturing potential
damage information. To enrich the feature set,
time-domain statistical features are also
extracted, including mean μ, standard deviation
σ, and kurtosis K:

μ= 1
T t=1

T
 � x(t) (2)

σ= 1
T−1 t=1

T
 � x(t)−μ 2 (3)

K=
1
T t=1

T
 � (x(t)−μ)4

σ4
(4)

These statistics reflect the overall distribution
and anomalous changes in the signal. To avoid
redundancy and the "curse of dimensionality"
caused by high-dimensional features, PCA is
employed for dimensionality reduction. Let the
high-dimensional feature matrix be X∈ℝn×d ,

where n is the number of samples and d is the
feature dimension. The covariance matrix is:

C= 1
n−1

(X−X�)⊤ (X−X�) (5)
Performing eigenvalue decomposition on it:

Cvi=λivi (6)
The eigenvectors corresponding to the top k
largest eigenvalues form the projection matrix
W. The final dimensionality-reduced features Z
are:

Z = XW (7)
This process effectively retains key
damage-sensitive information and reduces the
complexity of subsequent machine learning
models.

3.3 Machine Learning Model Design
In civil SHM, Random Forest (RF) and
Support Vector Machine (SVM), as mainstream
machine learning models, are used for damage
identification and localization in structures like
bridges. For the dimensionality-reduced feature
data Z, it is first combined with structural state
labels y to form the training set for model
construction. To reflect structural health states,
multi-class labels y ∈ {0, 1, 2} are used,
representing undamaged, minor damage, and
severe damage states, respectively. During
training, the goal of damage identification is to
maximize classification accuracy:

Accuracy= 1
n i=1

n
 � I y�i=yi (8)

y�i is the model-predicted class, yᵢ is the true
class, and I is the indicator function. For
damage localization, the model outputs the
damage probability for each monitoring point.
Localization error is measured using Root
Mean Square Error (RMSE):

RMSE= 1
m j=1

m
 � (lj−l�j)2 (9)

where lj and l�j are the true and predicted
damage locations, respectively. During model
training, Random Forest enhances robustness
to anomalies and noise by ensembling multiple
decision trees, making it suitable for complex
nonlinear relationships in structural signals.
Support Vector Machines utilize kernel
functions to enhance the discrimination
capability for damage features. Optimal
parameters are selected via cross-validation,
ultimately achieving efficient, automated
assessment of structural health states and
precise damage localization, effectively
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elevating the intelligence level of civil
structural safety monitoring.

3.4 Damage Classification
In civil SHM, damage classification aims to
automatically identify structural health states,
typically categorized into undamaged, minor
damage, moderate damage, and severe damage.
This study models the problem as a multi-class
classification task. Let the input feature vector
be zi and the corresponding structural state
label be yi∈{0,1,2,3} , representing
undamaged, minor, moderate, and severe
damage, respectively. The classification
process includes data standardization, feature
selection, model training, and prediction: zi
undergoes normalization to eliminate
dimension and scale effects; feature selection
methods identify features highly sensitive to
damage; optimized Random Forest and SVM
models then establish the mapping relationship
between features zi and damage classes yi on
the training set; finally, test set features zj are
input into the trained model M to obtain the
predicted class y�j=ℳ(zj) . Classification
performance is evaluated using a confusion
matrix, which tabulates the matching between
true and predicted labels for each class. Figure
1 shows the damage classification confusion
matrix:

Figure 1. Damage Classification Confusion
Matrix

The confusion matrix reveals high recognition
accuracy for undamaged (88/93 ≈ 94.6%) and
severe damage (69/74 ≈ 93.2%) states.
Accuracy for minor and moderate damage is
67/78 ≈ 85.9% and 62/75 ≈ 82.7%, respectively.
Misclassifications primarily occur between

minor and moderate damage, indicating some
confusion in distinguishing adjacent damage
levels. Overall classification performance is
favorable.

4. Results and Discussion

4.1 Experimental Data and Setup
This experiment utilizes data collected by an
actual bridge SHM system. Time-history
signals from accelerometers and strain gauges
deployed at multiple key locations on the main
girder and deck are used. The data covers four
states: undamaged, minor damage, moderate
damage, and severe damage. Eighty sample
sets are collected for each state. A single
time-history length is 10 seconds, sampled at
200 Hz. After filtering and denoising,
20-dimensional time-domain and
frequency-domain features are extracted,
including mean, standard deviation, skewness,
peak factor, and dominant frequency.
Following feature normalization, PCA reduces
the dimensionality to 6 dimensions, ensuring
key feature information is preserved. The
dataset is split into training and test sets in a
7:3 ratio. The training set optimizes model
parameters, while the test set evaluates
performance. Damage classification employs
Random Forest and SVM. Model parameters
are determined via 5-fold cross-validation. The
number of trees in RF is set to 100, and SVM
uses the Radial Basis Function (RBF) kernel.

4.2 Damage Identification and Localization
Results
The experimental workflow includes signal
filtering, feature extraction, PCA
dimensionality reduction, and damage
identification/localization using SVM and RF.
Figure 2 shows the damage identification
accuracy (%) and localization error (m) results
for eight health scenarios.
Data analysis shows that RF consistently
achieves higher damage identification accuracy
than SVM (RF: min 91.5%, max 97.1%; SVM:
min 85.0%, max 92.0%). For damage
localization, RF exhibits localization errors
below 1.4 meters for all scenarios, averaging
1.05 meters, significantly outperforming
SVM's average of 2.025 meters. This
demonstrates the superior and more stable
performance of the RF model in actual bridge
damage identification and localization.
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Figure 2. Damage Identification Accuracy (%) and Localization Error (m)

4.3 Multi-Model Comparative Analysis
Prior to the multi-model comparative analysis,
sample balancing is performed on the
monitoring data using a combination of
oversampling and undersampling to ensure
balanced sample sizes across damage levels,
mitigating the impact of class imbalance on
model training. To eliminate feature noise and
redundancy, multi-scale correlation analysis
and multicollinearity checks are conducted on
all features, removing features with weak
correlation or strong collinearity to enhance
model generalization. Besides SVM and RF,
other mainstream classification algorithms
including Decision Tree (DT), K-Nearest
Neighbors (KNN), and eXtreme Gradient
Boosting (XGBoost) are introduced.
Performance is uniformly compared using
three metrics: damage level classification
accuracy, average confidence level, and
detection sensitivity. Table 1 presents the
multi-model comparative results:
Table 1.Multi-Model Comparative Analysis

Results

Model
Classification
Accuracy

(%)

Average
Confidence

(%)

Detection
Sensitivity

(%)
SVM 89.8 87.5 95.2
RF 95.1 92.0 93.7
DT 87.2 83.9 90.1
KNN 85.6 82.5 89.4

XGBoost 93.6 90.3 94.1
RF performs best in damage level classification
accuracy (95.1%) and average confidence level
(92.0%), significantly enhancing the reliability
of model outputs and the stability of level
discrimination. XGBoost also performs notably
well, achieving classification accuracy and

confidence levels of 93.6% and 90.3%,
respectively, and a detection sensitivity of
94.1%, demonstrating strong feature learning
and generalization capabilities. SVM lags
slightly behind RF and XGBoost in
classification accuracy and confidence level
but achieves the highest detection sensitivity
(95.2%) among all models. It shows high
responsiveness to minor damage, especially
under small-sample damage conditions, aiding
in early damage warning. DT and KNN exhibit
relatively lower overall performance, with
accuracy and confidence levels below 90%,
indicating limited adaptability to feature
diversity and complex structures.

4.4 Discussion on Method Advantages and
Disadvantages
In discussing the advantages and disadvantages
of bridge damage identification methods, this
study employs four new quantitative indicators:
model complexity (measured by number of
parameters, unit: k), robustness, model
interpretability (scale 1-10), and training time.
A comparison is made for five mainstream
methods: SVM, RF, DT, KNN, XGBoost.
Specific results are shown in Table 2:
Table 2. Advantages and Disadvantages

Discussion

Method
Model

Complexity
(k)

Robustness
(%)

Interpretability
(Score)

Training
Time (s)

SVM 30 89.4 6 22.5
RF 120 94.1 7 35.8
DT 10 85.3 9 5.2
KNN 1 78.2 4 2.1
XGBoost 150 96.7 5 41.4
XGBoost exhibits the highest robustness
(96.7%) but also the highest model complexity
and longest training time, making it suitable for
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scenarios requiring strong noise resistance and
ample hardware resources. RF achieves a good
balance between robustness (94.1%) and
interpretability (7 points), with model
complexity and training time at
medium-to-high levels, suitable for fault
tolerance requirements in complex structures
within practical engineering. SVM has
relatively low model complexity and training
time, with good robustness (89.4%), but
moderate interpretability (6 points), making it
suitable for small-to-medium-scale applications
with moderate noise requirements. DT has the
lowest complexity (10k) and highest
interpretability (9 points), with very short
training times, suitable for rapid prototyping or
applications requiring manual result
verification, but its robustness is poor (85.3%),
rendering it unsuitable for high-noise
environments. KNN has extremely low
complexity (1k) and the shortest training time
but is sensitive to noise and has the lowest
robustness and interpretability, making it
challenging for engineering-grade SHM tasks.

5. Conclusion
This study effectively addresses core
challenges in civil SHM—complex data,
significant noise interference, and difficulty in
real-time identification—by integrating
multi-source sensor data and machine learning
algorithms. Wavelet Packet Transform is used
for signal denoising and feature extraction,
while Principal Component Analysis reduces
dimensionality to highlight key features
reflecting structural health states. Classification
and localization models based on Support
Vector Machine and Random Forest algorithms
demonstrate good adaptability and reliability
for different damage types and monitoring
scenarios. Validation using actual engineering
monitoring cases confirms the advantages of
multi-source feature fusion and intelligent
algorithms in structural damage identification
and localization. The models fully exploit
latent correlations within the data, significantly
enhancing the accuracy and efficiency of
damage identification to meet engineering
demands for efficient structural safety
assessment. The overall methodology provides
a theoretical and practical foundation for
lifecycle health monitoring and intelligent early
warning of civil structures like bridges. Future
research can further integrate cutting-edge

intelligent technologies like deep learning and
large models to continuously enhance model
adaptability to complex working conditions
and multi-dimensional heterogeneous data,
realizing intelligent, automated, and refined
management of civil structural health
monitoring.
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