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Abstract: As the level of mechanization in
substation operations continues to improve,
the complexity of the operational
environment and potential risks have become
increasingly evident. Traditional safety
management measures are no longer
sufficient to meet the modern power system's
demand for efficient, precise, and safe
operations. Beidou RTK (Real-Time
Kinematic) high-precision positioning
technology offers centimeter-level spatial
positioning capabilities, while artificial
intelligence (AI) technology has become
increasingly mature in target recognition and
behavior analysis. This paper addresses the
safety management needs in mechanical
operations at substations by proposing an
intelligent safety management method that
integrates Beidou RTK and AI. By
establishing a dynamic perception system for
the human-machine operational space, the
method enables real-time identification of the
locations and behaviors of personnel and
machinery, as well as dynamic risk
assessment. Additionally, this paper designs
an intelligent warning and intervention
mechanism based on integrated data to
ensure effective control before potential
hazards occur. Research indicates that this
integrated method has the potential to
enhance operational safety, precision, and
management intelligence levels, providing an
effective technical pathway for future
intelligent maintenance of substations.
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1. Introduction
The power system is moving towards
intelligence and automation, and the parallel

operation of mechanical equipment and
operators in substations is becoming increasingly
frequent. The high voltage electrical
environment and spatial constraints have
significantly increased safety risks. The
traditional manual inspection and operation
monitoring methods are difficult to meet the
real-time and accuracy requirements, and there is
an urgent need for high-precision positioning
and intelligent monitoring technology to
improve the level of safety management.
Beidou RTK (Real Time Kinematic) technology
provides centimeter level positioning capability,
with high-frequency and high-precision
real-time positioning characteristics, and has
demonstrated mature applications in surveying,
agriculture, forestry and other fields. Research
has shown that RTK can achieve positioning
accuracy of several centimeters in forests, plains,
and complex terrains, and is widely used for
precise navigation and path planning of drones
and ground platforms [1-3].
Artificial intelligence technology has shown
great potential in substation inspection and
operation monitoring. AI technology based on
computer vision can recognize the wearing of
safety helmets by workers, evaluate equipment
status, detect abnormal behavior, and provide
automated monitoring capabilities for the power
system [4-6].
However, current RTK positioning and AI
recognition technologies are mostly
independently applied to different scenarios,
lacking cross modal fusion capabilities. Part of
the research focuses on video recognition
violations and neglects precise spatial
positioning; Some studies use RTK to achieve
device positioning, but do not combine
behavioral analysis to form collaborative
warnings. How to integrate RTK and AI
technology to build a security control system
based on spatiotemporal data-driven has become
a key issue that urgently needs to be addressed.

6 Journal of Industry and Engineering Management (ISSN: 2959-0612) Vol. 3 No. 3, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press



To this end, this study proposes a dynamic
security control method that integrates Beidou
RTK and AI. Through the collaboration of
high-precision position perception, behavior
recognition, and security warning mechanisms,
an intelligent control theoretical system suitable
for substation environments is constructed. This
study designs a positioning recognition fusion
architecture, a dynamic boundary safety
discrimination mechanism, and an early warning
intervention strategy to promote the
transformation of substation mechanical
operation safety management towards precision,
intelligence, and dynamism.

2. Technical Foundation and Current
Development Status
Safety management of mechanical operations in
substations places high demands on the precise
positioning of the operating environment and
real-time behavior recognition. Beidou RTK
technology has become the preferred choice for
positioning due to its high-precision positioning
capabilities. Beidou RTK technology relies on
carrier phase differential measurement,
transmitting differential correction data between
base stations and rover stations to significantly
reduce pseudorange errors and achieve
centimeter-level positioning accuracy. Its basic
measurement model is as follows:

�� = �� − �� − ���� + �� + � (1)
Among these, ��, �� represent the pseudorange
received by the mobile station and base station,
respectively; ���� is the satellite clock offset
compensation term; � is the integer ambiguity;
� is the carrier wavelength; and � encompasses
error terms such as multipath and signal delay.
The typical positioning accuracy of the BeiDou
RTK system in an open environment can reach 8
mm + 1 ppm (horizontal) and 15 mm + 1 ppm
(vertical), fully meeting the spatial identification
and motion monitoring requirements for
personnel and equipment within substations [7].
Despite this, RTK positioning is susceptible to
signal attenuation and multipath interference in
substations with complex structures and a large
number of metal equipment obstructions, leading
to reduced positioning accuracy or even
interruptions. To enhance system stability,
researchers propose integrating GNSS with
inertial navigation (IMU), visual SLAM
(simultaneous localization and mapping), and
ultra-wideband (UWB) sensors, utilizing a
multi-state constrained Kalman filter (MSCKF)

model to achieve a more robust positioning
system [2]. The state update expression is as
follows:

��|�=��|�−1 + ��(�� − ����|�−1) (2)
In this equation, � is the state vector (position,
velocity, sensor bias, etc.), � is the observation
vector, �� is the Kalman gain, and �� is the
observation matrix. This fusion mechanism can
effectively compensate for the discontinuity of
RTK signals and is particularly suitable for
semi-enclosed or partially obstructed industrial
scenarios [8].
In the field of safety management, artificial
intelligence technology, especially behavior
recognition based on deep learning, provides a
powerful tool for risk warning. Through
convolutional neural network (CNN) models, it
is possible to identify in real time whether
workers are wearing safety helmets, entering
dangerous areas, and other critical behaviors.
Model training typically uses a cross-entropy
loss function:

� =− �=1
� �� log �� �� (3)

Among these, �� represents the true category
label, and �� � denotes the model's predicted
probability. Research has shown that visual
recognition systems based on models such as
YOLO and SSD can achieve high accuracy in
complex backgrounds [9].
Although RTK and AI visual recognition
systems each have significant advantages, there
is still an “information silo” problem in practical
applications, lacking a unified spatio-temporal
expression framework. Current research is
beginning to explore the path of deep integration
between the two, i.e., through coordinate
mapping and time synchronization mechanisms,
binding the behavior labels identified by AI to
the three-dimensional coordinate points provided
by RTK to achieve precise spatial localization of
risky behaviors. The following fusion state
model can be constructed in the system:

� = [�, �, �, ��, ��, ��, ��, ��, �] (4)
It includes parameters such as position
coordinates, velocity, sensor bias, and ambiguity.
The observation vector � integrates RTK
pseudorange, visual recognition tags, and other
auxiliary information, and uses extended
Kalman filtering (EKF) to achieve state
estimation and joint inference [8]:

�� = �, � + �， � = ℎ � + �� (5)
This enables the system to perform dynamic risk
analysis and control based on precise positioning
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and intelligent recognition [1], while
maintaining high accuracy and real-time
performance in a dynamic environment.
Despite this, the field still faces numerous
challenges. First, signal obstruction and
multipath effects severely impact the stability of
RTK, particularly in substation environments
with dense metal structures. Second, while
behavior recognition can identify non-compliant
actions, it lacks precise spatial positioning
support, making it difficult to pinpoint risky
behaviors to specific locations within a scene.
Finally, existing systems primarily focus on
post-event alerts and lack the ability for
proactive risk intervention based on trajectory
and behavior prediction. Therefore, future
development efforts should focus on the deep
integration of multiple sensors to achieve
spatio-temporal unification of environmental
perception and behavior recognition.
Simultaneously, dynamic risk assessment models
based on integrated data should be constructed to
facilitate a transition from passive alerts to
proactive warnings.
In summary, Beidou RTK and AI-based behavior
recognition technology provide a robust
foundation for positioning and intelligent
recognition in the safety management of
mechanical operations at substations. The
integration of these two technologies will
significantly enhance the accuracy and real-time
capabilities of safety risk identification.

3. Design of a Security Management Method
Integrating Beidou RTK andAI
As power grid substation construction enters the
stage of intelligentization and intensification,
on-site operational scenarios are becoming
increasingly complex. Traditional manual
supervision and static boundary control
measures face challenges such as delayed
response, insufficient accuracy, and weak
identification capabilities when addressing
real-time safety hazards. A fusion perception
system integrating Beidou RTK and AI can
achieve dual perception capabilities of spatial
positioning and behavioral recognition,
establishing a new
“human-machine-environment” integrated
operational safety control mechanism.

3.1 System Design Objectives and Philosophy
The integrated control and management system
aims to build a multi-dimensional real-time

perception, dynamic risk identification, and
automatic decision-making intelligent safety
management system.
(1) Spatial Precision Perception
Using Beidou RTK differential positioning
technology, it achieves centimeter-level
positioning of targets such as workers,
engineering vehicles, and robotic arms to
construct a digitalized work space. Inertial
measurement units (IMUs) and ultra-wideband
(UWB) sensors are introduced to enhance
positioning robustness and adapt to scenarios
with obstructions or signal interruptions.
(2) Behavioral Semantic Recognition
Based on deep learning image recognition
models, the system classifies and judges
behavioral patterns such as personnel equipment
wearing, safety distances, and movement
trajectories. It supports the identification of
violations such as crossing lines, approaching
high-voltage areas, and not wearing safety
helmets, and provides visual annotations.
(3) Proactive Risk Intervention
By integrating positioning information with
image recognition data, the system calculates
risk levels in real time and triggers intervention
measures such as audio-visual alarms, system
interlocking, and task suspension to ensure that
potential hazards are controlled in a timely
manner.
(4) Adaptive Dynamic Optimization
The system supports dynamic adjustment of
perception parameters and intervention strategies
based on operational scenarios, such as
switching recognition models for different task
types (crane operations, inspections) or adjusting
AI algorithm weights based on environmental
lighting conditions, to enhance adaptability in
complex scenarios.
The design philosophy emphasizes a closed-loop
control system based on “real-time spatial
visualization—intelligent behavior
recognition—quantitative risk prevention and
control,” providing a technical foundation for
practical deployment. The addition of adaptive
optimization principles ensures the system
maintains efficient operation in dynamic
environments.

3.2 System Architecture and Module
Functions
The system adopts a multi-layer architecture
design, forming a closed-loop process from data
collection to early warning feedback. Figure 1
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shows the four-level module structure of the
system, from perception and collection, status
fusion, risk identification, to control feedback.
Each module is connected through standard data
interfaces to achieve efficient information flow,
supporting real-time, closed-loop, and accurate
safety control processes.
The system functions are divided into the
following layers:
• Perception layer: Real-time perception of target
motion status and environmental parameters is
achieved through Beidou RTK antennas, video
capture modules, IMU nodes, and environmental
sensors (newly added, such as temperature and
humidity sensors).
• Integration Layer: Utilizes Extended Kalman
Filter (EKF) to integrate multi-source data,
constructing a unified spatiotemporal state
vector to enhance data consistency.
• Decision Layer: Deploys edge AI models
combined with rule databases and dynamic
threshold mechanisms to assess risk levels, with
added support for online rule database updates to
adapt to new scenarios.
• Feedback Layer: Executes control strategies
based on classification results, including actions
such as buzzer alarms, red light flashing, and
device suspension. Newly added remote
management interface supports real-time status
reporting and remote intervention.

Figure 1. SystemArchitecture Diagram of the
Security Control System Integrating Beidou

RTK andAI

3.3 Spatial and Semantic Information Fusion
Mechanism
The key to fusion lies in mapping “image

semantics” to “location space.” This system uses
the following three-step method to achieve
effective fusion:
(1) Time synchronization mechanism
All terminals (RTK modules, cameras, IMUs)
are synchronized based on timestamps, with an
error margin of less than 20 ms.
NTP synchronization or GPS timing is used to
ensure that image frames correspond to
positioning points.
(2) Coordinate mapping modeling
Identify the model output image pixel
coordinates �, � , and convert them to actual
spatial position coordinates (�, �, �) through
internal and external parameter matrices.
Use the PnP model in combination with depth
information to achieve accurate point cloud
spatial reprojection.
(3) State fusion estimation
The system uses the following state vectors for
filter estimation:

�� = [��, ��, ��,���, ���, ���, ��, ��, ��] (6)
The extended Kalman filter prediction and
update equations are as follows:

��|�−1 = �(��−1, ��−1) + �� (7)
�� = ℎ(��|�−1) + �� (8)

Among them, �, ℎare the system motion model
and observation model, respectively, while �, �
are Gaussian white noise.
This fusion mechanism enables each AI
recognition result to be localized on a
high-precision map, providing a coordinate basis
for subsequent risk assessment.

3.4 Behavior Discrimination and Risk
Calculation Mechanism
The integrated spatial semantic information is
input into the behavior discrimination module to
perform the following tasks:
(1) Violation behavior identification
AI models detect targets and label categories,
including failure to wear protective gear,
insufficient safety distance, and unauthorized
presence in non-work zones. The identification
accuracy rate (mAP@0.5) exceeds 95%, with
adaptability to various lighting conditions and
wearing scenarios. Newly added behavioral
sequence analysis uses Transformer models to
extract temporal features, enabling the
identification of complex actions (such as
consecutive non-compliant operations) and
enhancing discrimination accuracy.
(2) Spatial Boundary Violation Judgment
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The system presets electronic fence areas, such
as danger zones ℛ = {(�, �): �2 + �2 < �2} . If
(�, �) ∈ �, an alarm is triggered immediately.
In conjunction with the work trajectory
prediction module, early warning of “entering a
risk zone” is achieved.
(3) Risk Index Calculation
The risk level is calculated using the following
function:
�(�) = ��(�) + ��(�) + �����(�) (9)
Where �(�) is the current distance from the
danger zone; �(�) is the movement speed;
����(�) is the anomaly probability given by the
recognition model; � , � , � are empirical
weights.
Set the risk level threshold ��ℎ. When � >��ℎ,
execute the control linkage action.

3.5 Interlocking Mechanism and Proactive
Early Warning Response
Based on the risk assessment results, the system
automatically enters the response process,
including:
(1) Audio-visual alarm interlocking
When the confidence level of boundary crossing
or violation behavior exceeds 0.8, the system
triggers red light flashing, voice broadcast, and
wearable device vibration. New environmental
adaptive alerts dynamically adjust volume
(60–100 dB) and flashing frequency (1–5 Hz)
based on on-site noise and light intensity, with
multi-language prompts to accommodate
different worker needs.
(2) Equipment control intervention
If the predicted personnel path conflicts with
equipment, the system sends a pause command
to the PLC to ensure safety. The control logic is
based on dual verification of event triggering
and area prediction to avoid false pauses. New
hierarchical control strategy: low-risk triggers
deceleration, medium-risk triggers speed limit,
high-risk triggers pause, with response time
controlled within 200ms.
(3) Back-end recording and reporting
High-risk events are automatically archived in
the management platform, including fields such
as time, location, and behavior category, to
support post-event analysis. A new real-time data
visualization module has been added to display
risk heat maps and behavior trajectories via a
web interface, assisting managers in optimizing
work processes.

4. Safety Strategies and Control Mechanisms

Given the complexity of human behavior and the
high-risk nature of the environment during
mechanical operations at substations, a safety
monitoring system integrating Beidou RTK and
AI must establish comprehensive risk prediction,
alarm intervention, and strategy optimization
mechanisms. This chapter delves into the core
control mechanisms of the system from four
aspects: risk prediction logic, alarm and
intervention mechanism design, control strategy
optimization principles, and technical
adaptability. It further explores the system's core
control mechanisms and reinforces their
implementation feasibility and technological
advancement through newly added detailed
content.

4.1 Risk Prediction Mechanism
In substation operation scenarios, the spatial
relationships between personnel, mechanical
equipment, and high-voltage facilities are highly
sensitive. The system integrates high-precision
location data from Beidou RTK with behavioral
feature sequences captured by AI visual
recognition to construct a spatiotemporal joint
expression model for the early identification of
behavioral trends that may lead to risks. To
enhance the accuracy and timeliness of
predictions, this study further optimizes the
spatiotemporal modeling and behavioral
prediction mechanisms.
(1) Spatio-temporal Position Modeling and
Dynamic Prediction
The system sets the dynamic electronic fence
boundary �� of the work area based on the
real-time collection of the positions �� =
��, ��, �� of personnel or equipment using
Beidou RTK. By analyzing the position
sequence {��−�, …, ��} and velocity vector �� =
��−��−1

Δ�
, combined with the prediction time

window �� , the system employs a motion
prediction model:

��+Δ� = �� + �� ⋅ Δ� + 1
2

�� ⋅ (Δ�)2 (10)
Among them, �� is the estimated acceleration
value, which is fitted using historical trajectory
data. If the predicted position ��+Δ� tends to
enter the danger zone �� , the system triggers a
warning signal. In addition, to adapt to the
dynamic operational requirements of substations,
the electronic fence boundary �� can be
dynamically adjusted according to the type of
operational task (such as hoisting or
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maintenance) or time period, enhancing scene
adaptability.
(2) Behavior Pattern Matching and Risk Scoring
Using a deep learning-based temporal behavior
analysis model (such as LSTM or Transformer),
the system extracts key frame sequences of
behavior and combines them with a pre-trained
dangerous behavior template library to calculate
the similarity �� between the current behavior
pattern and high-risk behavior. Specifically, the
behavior feature vector �� is extracted from
video frames through a convolutional neural
network (CNN) and input into the temporal
model to output the risk probability �� , whose
loss function is:

� =−
�
 � ��log (�� �) + (1 − ��)log (1 − �� �) (11)

In this context, �� represents the true risk label,
and �� � denotes the predicted probability. When
�� > θ� (the threshold, typically set to 0.8), the
behavior is classified as high-risk, such as
“approaching live electrical equipment,” “illegal
use of tools,” or “entering hazardous areas
without proper protection.” To enhance
robustness, the system incorporates multimodal
data (e.g., infrared thermal imaging for low-light
scene recognition) to further improve behavior
detection accuracy in complex environments.
(3) Risk prediction based on multi-source data
fusion
To address the limitations of a single data source
in the complex environment of a substation, the
system has added a multi-source data fusion
module that combines RTK positioning, AI
vision, IMU sensors, and environmental
parameters (such as temperature and humidity)
to perform comprehensive risk assessments.
Using a Bayesian probability framework, the
risk probability calculation formula is:

�(Risk|�) = �(�|Risk)⋅�(Risk)
�(�)

(12)
In this context, � represents a multi-source data
set comprising location, behavioral
characteristics, and environmental variables.
�(Risk) denotes the prior risk probability,
calculated based on historical data statistics;
�(Risk|�) is obtained through machine learning
model training. This mechanism significantly
enhances the system's ability to preemptively
identify potential risks, particularly in scenarios
with severe obstructions or high pedestrian
density.

4.2 Alarm and Intervention Mechanism

Design
After risk prediction is completed, the system
needs to quickly convert the results into on-site
perceptible alarm signals and control commands
to achieve real-time intervention of violations.
This section adds multi-level alarm strategies
and intelligent intervention logic to the original
system to improve response efficiency and user
experience.
(1) Visual and Audio Alarm System
The system deploys multi-channel sensory alert
devices, including LED warning lights,
high-decibel audio broadcasters, and wearable
vibration devices. Based on precise location
information from RTK positioning, the system
can lock onto the target person's position through
the camera's field of view, enabling directional
alarms. For example, when personnel approach a
high-voltage equipment restricted zone, the
system triggers a combination of alerts: “red
light flashing in a specific direction + voice
announcement ‘Do not approach high-voltage
equipment’ + vibration from wearable devices.”
To adapt to noise and lighting conditions in
substations, the system supports dynamic
adjustment of alert intensity (e.g., volume,
flashing frequency) and multi-language voice
prompts to meet the needs of different personnel.
(2) Interlocking control mechanism
The system integrates with PLC (programmable
logic controller) or mechanical operation
terminal automation interfaces to trigger
intelligent intervention measures, including
“suspending equipment operation,” “slowing
down lifting machinery,” and “blocking
unauthorized remote commands.” The control
logic employs a multi-source verification
mechanism, ensuring that behavior recognition,
position boundary violations, and risk scores all
meet conditions simultaneously before triggering
intervention, thereby avoiding false positives.
For example, when personnel entering a
hazardous area are detected and the behavioral
anomaly confidence level exceeds 0.85, the
system sends a pause command to the PLC
while recording event details. To further
optimize intervention timeliness, the system
incorporates edge computing nodes to reduce
latency from risk detection to control execution,
with measured response times controlled within
200 milliseconds.
(3) Tiered Intervention and Feedback Loop
To avoid the impact of frequent alerts on
operational efficiency, the system has added a
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tiered intervention mechanism that sets different
response strategies based on the risk level R
(derived from the risk index calculation formula
in Section 4.1):
Low risk (R<0.5): Triggers a lightweight alert,
such as a flashing green indicator light, to
remind personnel to pay attention.
Medium risk (0.5 ≤ R < 0.8): Trigger voice
warnings and yellow indicator lights to prompt
personnel to adjust their behavior.
High risk (R ≥ 0.8): Trigger red light flashing,
voice alarms, equipment suspension, and other
strong intervention measures.
Additionally, the system records the
effectiveness of each intervention through a
feedback loop mechanism, optimizes alert
thresholds and intervention strategies based on
historical data, and enhances long-term
operational adaptability.

4.3 Principles for Optimizing Control
Strategies
The design of control systems relies not only on
technical implementation but also on safety
concepts and engineering practices. This section
refines the three original principles (safety first,
intelligent response, and collaborative
compatibility) and adds a new principle of
data-driven optimization.
(1) Safety First
The system prioritizes the prevention of
personnel injury and equipment accidents as its
core objective. Risk assessment strategies adopt
a conservative “better safe than sorry” approach,
setting lower alarm thresholds (e.g., θ� = 0.7).
To balance safety and efficiency, the system
supports dynamic threshold adjustments,
adapting and optimizing based on task type and
environmental risk levels. For example, during
high-voltage maintenance operations, the
threshold is lowered to 0.6, while during routine
inspections, it can be appropriately increased to
0.75.
(2) Intelligent response
The intervention mechanism is dynamically
adjusted based on the type of operation, stage,
and personnel identity. For example, in the event
of an approach to a high-voltage area where the
equipment is not started, the system directly
triggers an alarm; however, during the
authorized operation time window, the alarm
sensitivity is reduced for authorized personnel to
minimize false alarms. To enhance intelligence,
the system incorporates reinforcement learning

algorithms to optimize response strategies based
on historical intervention data, gradually
reducing unnecessary alarm interruptions.
(3) Collaborative Compatibility
The system interfaces with existing substation
dispatch systems, patrol platforms, and safety
operation apps via data interfaces, supporting
standard protocols (e.g., Modbus, OPC UA). To
avoid information silos, the system adopts an
open API design to ensure seamless integration
with third-party devices and software.
Additionally, the system supports offline mode,
enabling core functions to be performed via edge
computing during network instability.
(4) Data-Driven Optimization
The system continuously collects operational
data (including positioning accuracy, recognition
accuracy, and intervention success rate) and uses
machine learning models (such as gradient
boosting trees) to analyze system performance
bottlenecks, dynamically optimizing perception
algorithms and control logic. For example, in
high-obstruction areas of specific substations,
the system can automatically adjust the fusion
weights of RTK and IMU to enhance positioning
stability; in scenarios with high false alarm rates
for behavior recognition, the system can update
AI model weights to optimize classification
performance.

4.4 Discussion on the Adaptability of
Technical Implementation
Substations come in many types and vary
significantly in terms of environment, so the
system must have good environmental
adaptability and configurability. This section
adds cross-scenario adaptation technology and
modular deployment strategies to the existing
system, further enhancing its engineering
application capabilities.
(1) Adaptation to Different Spatial Structures
For enclosed substations, the system achieves
full coverage through fixed RTK base stations
and panoramic cameras. For semi-open or
mobile operation scenarios, the system combines
mobile base stations with wearable RTK
terminals, supplemented by IMU and UWB
sensors, to enhance positioning robustness in
areas with severe obstructions. To address
multipath interference caused by densely packed
metal structures, the system introduces
anti-multipath algorithms (e.g., RTK-MP),
which analyze signal characteristics and
optimize filtering to control positioning errors
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within 10 cm.
(2) Adaptation to different types of operations
Lifting, inspection, maintenance, and other types
of operations have different behavioral
characteristics and safety requirements. The
system supports a modular template calling
mechanism. Each type of operation corresponds
to preconfigured AI recognition models and
electronic fence parameters. For example, lifting
operations load the high-altitude operation
behavior template, and inspection operations
load the path planning template. Template
switching time is controlled within 1 second to
ensure rapid response to dynamic task
requirements.
(3) Terminal deployment and communication
adaptability
In areas with weak signals or remote regions, the
system supports edge computing mode,
processing RTK differential data and AI
inference tasks locally on a server to reduce
reliance on the cloud. The communication
module is compatible with 5G, 4G, and
dedicated wireless protocols (such as LoRa) to
ensure real-time and stable data transmission.
Terminal devices adopt a modular design,
supporting quick replacement of RTK modules,
cameras, or sensors to reduce maintenance costs.
(4) Cross-scenario migration and adaptive
configuration
To enhance the system's cross-scenario
applicability, the system introduces transfer
learning technology to fine-tune AI models
based on a small amount of target substation data,
enabling rapid adaptation to the behavioral
characteristics of new environments. For
substations of different scales, the system
supports adaptive configuration functionality,
automatically adjusting the number of RTK base
stations, camera field-of-view ranges, and alarm
thresholds. For example, small substations can
reduce the number of base stations to 1-2, while
large substations can expand to over 5, ensuring
a balance between coverage and cost.
Through these strategies, the system can flexibly
adjust its sensing range, control logic, and
recognition accuracy across different substation
environments, demonstrating excellent
scalability and engineering practicality, laying
the foundation for the widespread application of
intelligent safety management.

5. Conclusions and Outlook
This study focuses on mechanical operations in

substations and proposes a safety management
method that integrates Beidou RTK
high-precision positioning and AI visual
recognition to construct an intelligent perception
system that integrates real-time positioning,
image recognition, behavior monitoring, and
interlocking control. The study shows that
Beidou RTK can achieve centimeter-level spatial
positioning, which is suitable for dynamic
monitoring of the precise trajectories of workers
and equipment. AI recognition models can
rapidly identify high-risk behaviors such as
personnel trespassing and prohibited operations,
enhancing the proactivity and intelligence of
operational safety management. When integrated,
the system demonstrates strong real-time
performance, adaptability, and scalability,
effectively addressing the shortcomings of
traditional “physical isolation + manual
supervision” models and providing technical
support for the development of intelligent
substations.
Although this study has achieved preliminary
results in theory and methodology, certain
limitations remain. The system's robustness in
complex environments is insufficient, and the
timeliness and stability of multi-source data
fusion algorithms in dynamic scenarios need
improvement; RTK signals are unstable in areas
with severe obstructions, and AI model
recognition accuracy decreases under low-light
conditions or when personnel are obstructed;
issues such as inconsistent control system
interface standards, limited edge deployment
resources, and low acceptance among
operational personnel also constrain engineering
implementation. Future research could focus on
enhancing multi-modal perception, optimizing
edge-side algorithms, adapting heterogeneous
control systems, supporting 5G/edge computing,
and establishing data compliance mechanisms to
further enhance the system's practicality and
promotional value. Overall, this study provides
new insights into intelligent operation safety
supervision and offers feasible technical
pathways for the power industry to advance
intrinsic safety and intelligent maintenance.
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