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Abstract: This study addresses the limitations
of traditional learning state recognition
methods in complex educational scenarios by
proposing a multimodal deep learning model
that integrates visual, acoustic, physiological,
and behavioral data. The hierarchical feature
fusion architecture combines heterogeneous
data sources, while a dynamic attention
mechanism enables weighted feature selection.
A lightweight design ensures real-time
performance. Experimental results
demonstrate significant improvements over
baseline methods in both recognition
accuracy and F1 scores, with enhanced
environmental noise resistance and
cross-scenario generalization capabilities. The
research confirms that multimodal
integration comprehensively captures
learners' cognitive and emotional states,
providing a reliable personalized analysis tool
for intelligent education systems. Future work
should focus on optimizing cross-cultural

adaptability and addressing long-term
concept drift issues.
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1. Introduction

With the advancement of educational
informatization, learning state recognition has
become a pivotal factor in optimizing
personalized  learning  paths.  Traditional
single-modal data struggles to comprehensively
capture learners' dynamic cognitive and
emotional states, while multimodal data
integration offers innovative approaches for
precise modeling. This study aims to develop a
multimodal  personalized  learning  state
recognition model that integrates visual, acoustic,
and interactive  behavioral  information,
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overcoming the limitations of single modality to
provide more reliable decision support for
adaptive learning systems. The research will
focus on three aspects: theoretical framework
design, algorithm optimization, and model
validation, driving technological innovation and
practical applications in the field of intelligent
education.

2. Feature Analysis and Preprocessing of
Multimodal Learning Data

2.1 Analysis of Multimodal Data Sources and
Characteristics

The core value of multimodal learning data lies
in its ability to capture learners 'state information
from multiple dimensions, compensating for the
limitations of single-source data. In personalized
learning scenarios, multimodal data primarily
encompasses four categories: visual, auditory,
physiological signals, and interactive behaviors.
Visual data typically includes facial expressions,
eye-tracking, and pose estimation, which reflect
learners' focus levels, emotional states, and
cognitive load. Auditory data reveals learners
'emotional tendencies and language
comprehension abilities through tone, speech
rate, and semantic analysis. For instance, speech
characteristics during classroom Q&A or oral

practice can indirectly indicate cognitive
engagement.  Physiological  signals  like
electroencephalography (EEG), heart rate

variability (HRV), and galvanic skin response
(GSR) provide direct neural and physiological
feedback, suitable for high-precision attention or
stress monitoring. Interactive behavioral data
originates from learning system logs, including
clickstream patterns, answer duration, and page
transition frequency, which quantify learners'
behavioral patterns and strategic preferences.

Different modalities of data exhibit significant
differences. Visual and speech data, as
high-dimensional time-series signals, require
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handling of interference factors such as lighting,
occlusion, or background noise. While
physiological signals are highly objective, their
collection is costly and susceptible to individual
variations. Interactive behavioral data, though
structured, lacks direct representation of implicit
cognitive states. This heterogeneity demands
researchers to thoroughly understand the
physical significance and applicability of each
modality before data fusion. For instance, facial
expressions can assist in assessing learners'
immediate emotions, but must be combined with
eye-tracking data to distinguish between
"superficial focus" and "deep engagement."
Coordinated analysis of speech and interactive
behaviors can more accurately identify
frustration or cognitive bottlenecks. Therefore,
characterizing the properties of multimodal data
not only forms the basis for preprocessing but
also serves as a critical foundation for feature
selection and weight allocation during model
design [1].

2.2 Alignment and Standardization of
Cross-modal Data

In multimodal learning state recognition, the
core challenge of data fusion lies in effectively
aligning and standardizing data from different
sources, scales, and temporal characteristics.
Visual, acoustic, physiological signals, and
behavioral interaction data often exhibit distinct
acquisition frequencies and spatiotemporal
distribution patterns. Direct fusion may lead to
information redundancy or semantic conflicts.
Temporal alignment stands as the primary task in
multimodal data processing, particularly for
continuous monitoring in dynamic learning
scenarios. For instance, eye-tracking data
updates at millisecond intervals while answer
logs are recorded in seconds, requiring
techniques like interpolation, sliding windows,
or dynamic time warping (DTW) to achieve
temporal synchronization. Spatial alignment
involves unifying coordinates across
multi-sensor data, such as spatial registration
between facial keypoint detection results and
eye-tracking heatmaps, to analyze correlations
between visual attention distribution and
emotional expression changes.

Normalization and standardization are employed
to eliminate dimensional discrepancies and
distributional biases across modalities. Since
data values from different modalities may vary
dramatically, direct fusion can diminish the
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contribution of low-amplitude features. Common
solutions include normalization (scaling data to
fixed ranges) and standardization (transforming
data into a zero-mean, unit-variance distribution
through Z-scores). For unstructured data like
audio spectra or image features, deep embedding
techniques are required to map them into a
unified semantic space. For instance, pre-trained
models can extract emotional embedding vectors
from speech data, which are then measured for
similarity with visual features in latent space.
Additionally, cross-modal attention mechanisms
dynamically learn weights between modalities,
enabling adaptive feature-level fusion. These
methods not only enhance data comparability
but also establish high-quality input foundations
for subsequent modeling processes [2].

2.3 Noise Filtering and Feature Dimension
Reduction Strategy

Multimodal learning datasets are frequently
contaminated by significant noise, including
visual data interference from ambient lighting
variations, physiological signal drift caused by
poor device contact, and abnormal click
behaviors in system logs. Noise filtering serves
as a critical step to ensure model robustness,
requiring tailored strategies based on noise types.
For high-frequency random noise, wavelet
transforms or low-pass filtering can effectively
smooth signals. For sudden disturbances,
statistical outlier detection methods can identify
and eliminate abnormal segments. When
processing noise in time-series data, contextual
consistency must be considered-such as
modeling learners' state transitions using hidden
Markov models to correct misjudgments caused
by transient interference. In speech data,
independent component analysis (ICA) can
separate environmental reverberation from target
sound sources, while deep learning denoising
algorithms can restore clear features from
motion blur in visual data.

Feature dimensionality reduction addresses the
challenges of high dimensionality and sparsity in
multimodal data. Direct use of raw features not
only incurs high computational costs but may
also introduce redundant information. Linear
methods like principal component analysis (PCA)
extract key components through variance
maximization, suitable for structured behavioral
data; nonlinear approaches such as t-SNE and
UMAP  preserve complex topological
relationships between modalities, ideal for
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visualization or clustering tasks.
autoencoders  achieve end-to-end feature
compression through bottleneck structures,
excelling in processing unstructured data like
images and speech. Additionally,
domain-specific feature selection is
crucial-methods like information gain or mutual
information can quantify feature-learning
correlations to eliminate weakly discriminative
variables. The reduced feature set should balance
compactness and representativeness, avoiding
overfitting  while  supporting fine-grained
classification requirements [3].

Deep

3. Design of Personalized Learning State
Recognition Model

3.1 Hierarchical Architecture of Multimodal
Fusion

In the construction of multimodal learning state
recognition models, hierarchical architecture
design serves as the core strategy for achieving
efficient feature fusion. This architecture
typically consists of three main modules: the
data layer, feature layer, and decision layer, each
responsible for specific functions and working in
synergy. The data layer processes raw
multimodal inputs such as visual images, speech
waveforms,  physiological  signals, and
behavioral logs. Through sensor synchronization
technology, it ensures temporal consistency
while performing preliminary noise reduction
and alignment. The feature layer employs
modality-specific extraction
networks-convolutional neural networks process
visual data, recurrent neural networks analyze
time-series speech signals, and graph neural
networks model interaction sequences-enabling
high-order semantic representation in
independent modal spaces. The decision layer
achieves cross-modal interaction through gating
mechanisms or cross-attention, mapping
heterogeneous features into a unified learning
state space. This hierarchical design not only
preserves modality-specific characteristics but
also avoids information loss through progressive
fusion. For instance, lower-level fusion captures
fine-grained correlations, while higher-level
fusion integrates abstract semantics. The
flexibility of this hierarchical architecture allows
adaptation to various educational scenarios,
whether real-time monitoring in classroom
environments or asynchronous analysis in online
learning platforms. Optimal performance can be
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achieved by
granularity [4].

adjusting fusion depth and

3.2 Dynamic Feature Weighting based on
Attention Mechanism

The attention mechanism provides dynamic
feature selection capabilities for multimodal
learning state recognition, addressing the
limitations of traditional static weighting
methods in adapting to individual differences
and scenario changes. By calculating
intra-modal and cross-modal attention weights,
this mechanism automatically focuses on the
most discriminative feature segments. Within a
single modality, temporal attention identifies
critical frames or speech segments-such as
highlighting frequent blinking or frowning
moments in facial videos, or marking emotional
turning points with intonation shifts in speech
streams. Cross-modal attention evaluates the
contribution of different data sources, for
example, reducing the weight of response
durations in behavioral logs when physiological
signals indicate high cognitive load to avoid
redundant  information interference. This
dynamic weighting is particularly effective for
learning state transitions, such as from "focused"
to "fatigued," allowing models to capture subtle
signs through evolving attention distributions.
Additionally, hierarchical attention design
distinguishes between global states and local
features-for instance, group learning employs
global attention to identify common patterns,
while individual-level attention pinpoints
specific learners 'abnormal behaviors. The
explainability of the attention mechanism also
enhances model credibility. Through visualizing
weight distributions, educators can intuitively
understand the model's decision-making
rationale, thereby optimizing instructional
intervention strategies [5].

3.3 Lightweight Model Deployment and
Real-time Optimization

The practical application of personalized
learning state recognition models must meet the
requirements of lightweight and low latency,
presenting dual challenges for algorithm design
and engineering implementation. In terms of
model  architecture,  replacing  standard
convolution with deep separable convolutions,
applying distillation techniques to compress
large pre-training models, and adopting sparse
connections to reduce parameter size can
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significantly lower computational costs while
maintaining accuracy. For instance, replacing
ResNet with MobileNet architecture for visual
data processing or using TinyBERT for speech
feature extraction can multiply inference speeds
on edge devices by several times. Real-time
optimization requires combining pipeline
parallelism with edge computing strategies,
distributing feature extraction and fusion tasks
across different hardware units: GPUs handle
image processing, CPUs run lightweight
temporal models, and FPGAs accelerate
attention computations. Additionally, dynamic
sampling technology can adjust input resolution
or frame rate based on system load, such as
analyzing only key facial features during
low-power scenarios or performing segmented
non-uniform sampling of speech signals. These
optimizations not only ensure smooth operation
of models on resource-constrained devices like
tablets and embedded sensors but also support
large-scale concurrent processing, providing a
technical foundation for real-time feedback in
smart classrooms or online education platforms.
The ultimate goal of lightweight deployment is
to achieve '"seamless monitoring," integrating
learning state recognition naturally into teaching
processes rather than becoming an additional
burden [6].

4. Model
Evaluation

Validation and Performance

4.1 Experimental Design and Baseline Model
Comparison

To validate the effectiveness of personalized
learning state recognition models for multimodal
data fusion, this study designed a systematic
experimental protocol comprising three key
components: dataset construction, baseline
model selection, and evaluation framework
design. The dataset incorporates multimodal data
collected from authentic classroom
environments, encompassing visual, acoustic,

physiological, and behavioral modalities.
Through expert annotation, learning states were
categorized into four types: focused, confused,
fatigued, and distracted. Fivefold
cross-validation was employed to ensure result
reliability, with training, validation, and test sets
proportioned at 6:2:2. To comprehensively
assess model performance, four representative
baseline models were selected for comparison:
an LSTM classifier based on single-modal data,
an early fusion convolutional neural network, a
late fusion random forest model, and a SVM
classifier = employing  traditional  feature
engineering. These baseline models span from
conventional machine learning to deep learning
approaches, fully demonstrating the value of
multimodal fusion. All experiments were
conducted on a unified NVIDIA Tesla V100
GPU environment, with identical preprocessing
procedures and hyperparameter tuning strategies
applied across all models to ensure fairness [7].
Table 1 presents the comparative analysis
between our model and the baseline model
across four dimensions: accuracy, F1 score,
inference latency, and parameter size. Our model
achieves 89.7% accuracy and 88.3% F1 score,
outperforming the best baseline models by 5.2
and 4.8 percentage points respectively,
demonstrating the effectiveness of multimodal
fusion. Notably, despite its large parameter size,
the hierarchical architecture and lightweight
design keep inference latency below 83ms,
meeting real-time requirements. The comparison
reveals limitations in single-modal models: the
LSTM classifier using only visual data shows
low recognition rates for "confused" states,
while late fusion methods underperform in
cross-modal  association modeling. These
findings provide clear directions for future
model optimization and validate our core
innovation-achieving more precise learning state
recognition through dynamic feature weighting
and hierarchical fusion.

Table 1. Comparison of Model Performance

typesofmodels precision(%) | Flscore(%) | Inferencedelay(ms) Numberofparameters(M)
single mode LSTM 76.5 74.2 45 3.2
Early fusion CNN 81.3 79.8 62 12.7
Late fusion random forest 79.6 77.5 28 -
Traditional feature SVM 72.8 70.1 15 -
The model 89.7 88.3 83 18.5

4.2 Construction of Multi-Dimensional

Evaluation Indicators
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In evaluating the performance of personalized
learning state recognition models, a single metric
often fails to fully reflect practical application
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value. Therefore, a multi-dimensional
assessment framework is essential. This system
should conduct comprehensive evaluations
across four core dimensions: recognition
accuracy, real-time responsiveness, robustness,
and interpretability. The accuracy dimension
encompasses traditional metrics like precision,
recall, and F1 score, while incorporating
differentiated weights for specific learning
states-such as prioritizing "confusion" detection
to ensure timely instructional interventions. The
real-time responsiveness dimension focuses on

engineering parameters including inference
latency, memory consumption, and energy
efficiency, ~which determine  deployment

feasibility in educational environments. The
robustness dimension assesses stability under
adversarial testing scenarios like lighting
variations, voice interference, and device
heterogeneity. The interpretability dimension
employs methods such as attention visualization,
feature contribution analysis, and decision path
tracing to make model reasoning transparent and
understandable to educators.

The development of this multidimensional
evaluation framework must adhere to the unique
requirements of educational scenarios. For
instance, in accuracy assessment, it should not
only evaluate overall performance but also
analyze the model's adaptability to learners of
different age groups and subject matter.
Real-time testing requires simulating
multi-device concurrent scenarios in actual
classroom environments rather than ideal
laboratory conditions. Robustness verification
should focus on common teaching disruptions
like projector flickering or background noise
during group discussions.  Explainability
evaluation must integrate educational
psychology theories to ensure the model's
recognition of state characteristics aligns with
human teachers 'experiential judgments. This
comprehensive assessment strategy not only
objectively highlights the model's technical

strengths but also reveals its potential limitations
in practical education applications, providing
clear directions for future optimization. The
resulting evaluation system serves both the
rigorous standards of academic research and the
practical considerations of educational product
implementation.

4.3 Analysis of Model Robustness and
Generalization Ability

In practical applications of personalized learning
state recognition models, robustness and
generalization capabilities are key indicators of
their engineering applicability. This study
conducts systematic analysis from three
dimensions: data distribution, environmental
interference, and  cross-scenario  transfer,
revealing the model's stable performance in
complex educational environments. Regarding
data distribution, test subsets with diverse
learning styles, cognitive levels, and age groups
were constructed to evaluate the model's
adaptability to individual differences,
particularly its recognition effectiveness for
students with special educational needs, as
shown in Table 2. Environmental interference
tests simulated typical classroom noises such as
sudden lighting changes, equipment movement,
and background conversations, assessing the
anti-interference performance of visual and
acoustic  features.  Cross-scenario  transfer
experiments verified the model's knowledge
transfer efficiency from laboratory environments
to real classrooms, and from online learning
platforms to offline teaching scenarios-a
capability that directly determines the model's
potential for large-scale application. Analysis
results demonstrate that the hierarchical fusion
architecture  better  resists  performance
degradation caused by local mode failures
compared to traditional methods, while the
dynamic attention mechanism significantly
enhances the model's generalization recognition
capability for unknown learning patterns.

Table 2. Comparison of Model Capability Analysis

Assessment dimensions test method Key performance indicators Advantage features
Data robustness Cross—gropp subset Range O.f .ﬂuctuatlon of  |Dynamic featur; weighting
testing recognition accuracy mechanism
. Noise injection pressure Performance decline Multimodal complementary
Environmental robustness . .
test magnitude properties
Short-term generalization | Test incremental data in | The improvement rate after Feature decoupling
ability the same scenario parameter tuning representation
Long-term gen cralization Cross sgmegter data Concept drift adaptation speed|Online learning mechanism
ability validation
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Cross scenario Different teaching

Zero sample recognition Domain invariant feature

generalization capability | scenario migration test accuracy extraction
In-depth analysis reveals that the model's applications.

robustness advantages stem from three design

features: The complementarity of multimodal  References

data prevents noise from specific modalities
from causing system-wide failures, hierarchical
feature extraction preserves state representations
at different granularities, and online fine-tuning
mechanisms enable continuous adaptation to
new  teaching  environments.  Enhanced
generalization capabilities are attributed to
attention mechanisms focusing on core features
and lightweight design avoiding overfitting
issues. These characteristics collectively ensure
reliable performance across various educational
informatization  scenarios, establishing a
technical foundation for deploying personalized
learning support systems. Notably, the model
still ~ exhibits recognition biases among
cross-cultural learners, pointing to directions for
future research improvements.

5. Conclusions

This study systematically integrates multimodal
data to develop an efficient and accurate
personalized learning state recognition model,
addressing the limitations of traditional methods
in representing complex learning scenarios.
Theoretical analysis and experimental validation
demonstrate that the model can dynamically
capture learners' cognitive and emotional
changes, providing technical support for
intelligent decision-making in adaptive learning
systems. Future research could further explore
cross-scenario transfer capabilities and privacy
protection mechanisms to promote sustainable
development in intelligent education

Copyright @ STEMM Institute Press

[1] Xie Dingfeng, Zhou Anzhong, Li Jieqin.
Research on  Personalized Education
Evaluation Empowered by Multimodal Data
[J]. Journal of Hubei Open Vocational
College, 2025,38(10):149-151.

[2] Xue Yaofeng, Qiu Yisheng, Chen Zhan.
System Framework for Multimodal Data
Fusion and Its Educational Applications [J].
Basic Education, 2024,21(05):62-70.

[3] Xie Dingfeng, Zhou Anzhong, Li Jieqin, et al.
Research on Precision Intervention for
Personalized Learning Based on Multimodal
Data [J]. Computer Knowledge and
Technology, 2024,20(16):98-100+104.

[4] Jiang Jie, Yu Wenting, Wang Haiyan.
Research on Student Learning Behaviors in
Smart Classrooms Based on Multimodal
Data [J]. China Education Informatization,
2024,30(04):107-117.

[5] Zhang Lele and Gu Xiaoqing. A Classroom
Teaching Behavior Analysis Model and
Practical ~ Framework  Supported by
Multimodal Data [J]. Open Education
Research, 2022,28(06):101-110.

[6] Hu Wenting. Research on Learning and
Analysis Applications for Multimodal Data

[J]. China  New Communications,
2022,24(17):107-109.
[7] Zhang Lizhao. Analysis of Learning

Investment in Multimodal Data-Driven
Contexts [D]. Central China Normal
University, 2022.

http://www.stemmpress.com





