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Abstract: In recent years, visual
Transformers have achieved significant
success in the field of computer vision, but
they still have shortcomings in terms of local
feature extraction. This paper proposes an
innovative CNN-Transformer hybrid
architecture that combines the local feature
extraction capabilities of convolutional neural
networks with the global modelling
capabilities of Transformers to achieve
efficient image classification on the
CIFAR-100 dataset. The architecture first
uses multi-scale CNN modules to extract
hierarchical feature representations from
images, then employs a Transformer encoder
to capture long-range dependencies between
features. Experimental results demonstrate
that the proposed hybrid architecture
achieves excellent classification accuracy on
the CIFAR-100 dataset, with stable training
processes and fast convergence speeds. This
study enhances the model's ability to
understand complex image features by
introducing positional encoding mechanisms
and multi-head self-attention mechanisms.
Additionally, this paper employs various data
augmentation strategies and regularisation
techniques, including random cropping,
colour jittering, and Dropout, to further
improve the model's generalisation
performance. Ablation experiments validate
the effectiveness of each module, with the
number of Transformer layers and attention
heads having the most significant impact on
model performance. This study provides new
insights into hybrid architecture design in the
field of computer vision, offering important
theoretical value and application prospects.
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1. Introduction
Image classification as a foundational task in
computer vision, has undergone a revolutionary
transformation over the past decade,
transitioning from traditional methods to deep
learning. Since AlexNet achieved a
breakthrough success in the ImageNet
competition in 2012, convolutional neural
networks (CNNs) have dominated the
development of computer vision. The deep
residual network ResNet addressed the
degradation issues in deep networks through
residual connections, enabling the training of
deep networks with hundreds of layers [1].
DenseNet further improved feature propagation
and reuse through dense connections [2].
EfficientNet systematically studied the balance
between network depth, width, and resolution
through neural architecture search, setting new
records on multiple benchmark datasets [3].
However, the inherent local receptive field of
CNNs limits their ability to capture long-range
dependencies, which has become a bottleneck
when handling complex scene understanding
tasks.
In 2020, the introduction of the Vision
Transformer (ViT) marked the official entry of
the Transformer architecture into the field of
computer vision. Research has shown that the
pure Transformer architecture can achieve
performance on par with or even surpassing that
of CNNs on large-scale datasets [4]. This
breakthrough work broke the monopoly of
CNNs in visual tasks. Subsequently, DeiT
enabled ViT to be effectively trained on smaller
datasets through knowledge distillation and data
augmentation strategies [5]. Swin Transformer
achieved linear computational complexity
through hierarchical design and shifted window
mechanisms, becoming an important milestone
in visual Transformers [6]. However, ViT-like
models typically require large amounts of
training data and computational resources, are
prone to overfitting on medium-sized and small
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datasets, and lack the inductive bias of CNNs,
leading to suboptimal performance on certain
tasks.
Recognising the respective advantages of CNNs
and Transformers, researchers began exploring
ways to combine the two. CVT introduces
convolutional operations into Transformers,
enhancing the model's local modelling
capabilities [7]. The Levit architecture achieves
a balance between speed and accuracy by
embedding convolutional operations into the
Transformer [8]. The CoAtNet systemically
investigates the combination of deep
convolutions and self-attention, achieving
outstanding performance on ImageNet [9].
These works demonstrate that the
complementary advantages of CNNs and
Transformers hold significant research value.
Although existing research has made significant
progress, how to effectively integrate the local
feature extraction capabilities of CNNs and the
global modelling capabilities of Transformers
remains an open question. Most existing
methods either simply use CNNs as feature
extractors or introduce convolutional operations
into Transformers, lacking systematic
exploration of the deep integration of the two
architectures. In addition, existing hybrid
architectures often have a large number of
parameters, making them difficult to deploy in
resource-constrained environments.
Based on the above observations, this paper
proposes a novel CNN-Transformer hybrid
architecture to address these challenges. The
main innovations of this architecture include: (1)
designing a multi-scale CNN feature extractor
that captures image features of different
granularities through progressive downsampling;
(2) introducing learnable class tokens to
effectively aggregate global information for
classification; (3) adopting a position encoding
mechanism to preserve spatial position
information and enhance the model's spatial
perception capabilities; (4) Optimised
hyperparameter configuration to significantly
reduce the number of model parameters while
maintaining high accuracy.
The overall arrangement of this paper is as
follows: the second part describes the system
design; the third part describes the method
implementation process and key technologies in
detail, and demonstrates the experimental design
and result analysis; finally, the full paper is
summarized and possible future research

directions are proposed.

2. System Design

2.1 System Architecture
The proposed CNN-Transformer hybrid
architecture consists of three main components:
a multi-scale CNN feature extractor, a
Transformer encoder, and a classification head.
The overall architecture follows a hierarchical
design principle, achieving efficient image
classification through progressive feature
extraction and fusion.
1. The CNN feature extractor adopts a
three-stage design, with each stage comprising
two convolutional blocks and one max pooling
layer. This design enables the gradual extraction
of visual features from low to high levels while
reducing the spatial dimensions of feature maps
through downsampling. This multi-scale design
draws inspiration from modern CNN design
principles [10], enhancing the model's
expressive capability through progressive feature
extraction.
The first stage transforms the input image
(3×32×32) into a 64-channel feature map. Each
convolutional block consists of a 3×3
convolution, batch normalisation, and a ReLU
activation function. Batch normalisation helps
accelerate training and improve model stability.
Through 2×2 max pooling, the feature map size
is reduced to 16×16.
In the second stage, the number of feature
channels is expanded to 128 to further extract
intermediate semantic features. The same
convolutional block structure is maintained to
ensure consistency in feature extraction. After
pooling, the feature map size becomes 8×8.
In the third stage, 256-channel high-level
semantic features are output, with a feature map
size of 4×4. At this stage, the features already
possess strong semantic expressive capabilities,
laying the foundation for subsequent global
modelling.
Finally, a 1×1 convolution is used to project the
256-dimensional features to 384 dimensions,
matching the Transformer's embedding
dimension. This projection does not alter the
spatial dimension but only adjusts the number of
channels, enabling a smooth transition between
the feature spaces of CNN and Transformer.
Research has shown that using convolution in
the early layers of ViT can significantly improve
performance and training stability [11].
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2. The Transformer encoder is responsible for
capturing global dependencies between features.
First, the feature maps output by the CNN are
flattened into a sequence format, resulting in a
feature sequence of length 16 (4×4). Each
feature vector at each position has a dimension
of 384. To preserve spatial positional
information, we employ fixed-position encoding
based on sine and cosine functions. This
encoding effectively expresses the relative
relationships between different positions and
provides the model with explicit spatial
structural prior knowledge. The position
encoding is added to the feature sequence to
provide position-aware capabilities for the
self-attention mechanism. This design follows
the original Transformer architecture.
Additionally, the introduction of a learnable
class token is a key design feature of this
architecture. The class token is added as an extra
sequence element at the beginning of the feature
sequence and aggregates global information
during the Transformer processing. Finally, the
output of the class token is used for
classification prediction. Furthermore, the
Transformer encoder consists of six identical
Transformer blocks. Each block comprises a
Multi-Head Self-Attention (MHSA) sublayer
and a Feed-Forward Network (FFN) sublayer,
both of which employ residual connections and
layer normalisation.
The multi-head self-attention mechanism uses
six attention heads, each with a dimension of 64
(384/6). This design allows the model to learn
feature relationships from different
representation subspaces. The attention
calculation formula
is: Attention(Q,K,V)=softmax QKT

dk
V , Among

them, Q, K, and V represent the query, key, and
value matrices, respectively, and dk is the
dimension of the key. The multi-head
mechanism enhances the model's expressive
power by performing parallel computations on
multiple attention functions.
The feedforward network consists of two linear
layers with a GELU activation function in
between. The hidden layer dimension is 1536
(384×4), following the standard Transformer
design. FFN performs non-linear transformations
independently for each position to enhance the
expressive power of the model.
3.The classification head classifies the final
representation of the category tokens. First, layer

normalisation is used to stabilise the feature
distribution, then Dropout (with a rate of 0.1) is
applied to prevent overfitting. Finally, a fully
connected layer maps the 384-dimensional
features to logits for 100 categories.

2.2 Optimization of the System
2.2.1 Data augmentation strategies
Data augmentation is a key technology for
improving model generalisation capabilities.
This paper employs a combination of multiple
data augmentation strategies, which were
selected based on successful practices in DeiT
[5]:
Random Crop, Pad the 32×32 image with 4
pixels around it, then randomly crop it back to
its original size. This strategy simulates changes
in the target's position, enhancing the model's
translation invariance. Random Horizontal Flip,
Flip the image horizontally with a 50%
probability. This is one of the most commonly
used augmentation techniques in image
classification, effectively expanding the training
data. Random Rotation, Randomly rotate the
image within a range of ±15 degrees. Moderate
rotation enhances the model's robustness to
changes in object orientation. Color Jitter,
Randomly adjust the image's brightness (±0.2),
contrast (±0.2), saturation (±0.2), and hue (±0.1).
This strategy simulates changes in images under
different lighting conditions. Normalisation,
Normalises using the statistical values of the
CIFAR-100 dataset, with a mean of (0.5071,
0.4867, 0.4408) and a standard deviation of
(0.2675, 0.2565, 0.2761). Normalisation helps
accelerate model convergence.
2.2.2 Training strategy optimisation
Optimizer selection, The AdamW optimizer is
used, which combines Adam's adaptive learning
rate and weight decay regularisation. The initial
learning rate is set to 0.001, and the weight
decay coefficient is 0.02. AdamW is more stable
than standard Adam when handling weight
decay.
Learning rate scheduling, Use the cosine
annealing strategy to adjust the learning rate. Set
T_max to 100 epochs and eta_min to 0.001 so
that the learning rate changes periodically
according to the cosine function curve during
training, with the lowest value being 0.001. This
scheduling strategy allows the model to
periodically adjust the learning rate during
training, which helps to escape local optima.
Gradient clipping, Limits the gradient norm to
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within 1.0 to prevent gradient explosion. This is
particularly important for training deep networks,
as it improves training stability.
2.2.3 Regularisation techniques
Dropout regularisation, Dropout is applied in the
Transformer block and classification head, with
a dropout rate of 0.1. Dropout forces the model
to learn more robust feature representations by
randomly discarding neurons.
Weight decay, L2 regularisation is implemented
using the AdamW optimiser, with a weight
decay coefficient of 0.02. This helps prevent
model parameters from becoming too large and
improves generalisation ability.
Layer normalisation: Layer normalisation is
widely used in Transformer blocks to stabilise
the training process. Layer normalisation
reduces internal covariate shifts by standardising
the features of each sample.
Parameter initialisation: Linear layer weights are
initialised using a truncated normal distribution
with a standard deviation of 0.02. Category
tokens use the same initialisation strategy.
Reasonable initialisation helps the model
converge quickly.

3. Systematic Experiment

3.1 Preparation and Processing of Data
This experiment was conducted on the
CIFAR-100 dataset. CIFAR-100 is a widely
used benchmark dataset in the field of computer
vision, containing 100 categories covering
various types of objects such as animals, plants,
vehicles, and everyday items. Each category
includes 600 colour images of 32×32 pixels,
with 500 images used for training and 100
images used for testing. The entire dataset
comprises 50,000 training images and 10,000
testing images. Compared to the 10 categories in
CIFAR-10, the fine-grained classification task in
CIFAR-100 is more challenging, enabling a

better assessment of the model's feature learning
and generalisation capabilities. Additionally,
different preprocessing strategies are applied to
the training and testing sets.
The training set applied the following data
augmentation techniques: random cropping,
where the image is randomly cropped back to
32×32 after padding with 4 pixels around the
edges; random horizontal flipping, performed
with a 50% probability; random rotation, within
a range of ±15 degrees; and colour jittering,
where brightness, contrast, and saturation are
adjusted within a range of ±0.2, and hue within a
range of ±0.1. Standardisation, standardising
using the statistical values (mean and standard
deviation) of CIFAR-100. The test set undergoes
standardisation only, using the same statistical
parameters as the training set, without applying
any data augmentation techniques, to ensure
consistency in evaluation.

3.2 Analysis of Results of the Experiment
The training configuration parameters for this
experiment include:
Optimizer: AdamW, learning rate 0.001, weight
decay 0.02; learning rate scheduling: cosine
annealing, minimum learning rate unchanged;
training epochs: 100 epochs; gradient clipping:
maximum norm 1.0; model parameters:
embedding dimension 384, attention heads 6,
Transformer layers 6, MLP ratio 4.0, Dropout
rate 0.1.
The model includes the following components:
CNN feature extractor: three convolutional
stages with channel counts of 64, 128, and 256;
Transformer encoder: 6 layers, each containing
multi-head self-attention and a feedforward
network; classification head: fully connected
layer outputting 100 categories. According to
Figure 1, this curve shows the performance
changes of the model during the training process.

Fig 1. Loss and Accuracy
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By observing changes in the curve, the training
process can be divided into three stages: Rapid
learning stage (0–20 epochs): The loss decreases
sharply, the accuracy improves rapidly, and the
model quickly learns the basic patterns of the
data. Stable improvement stage (20–60 epochs):
The loss decreases steadily, the accuracy
continues to improve, and the model gradually
optimises the feature representation. Fine-tuning
stage (60–100 epochs): The loss decreases
slowly, the accuracy remains stable, and the
model undergoes fine-tuning.
These curve characteristics validate the
effectiveness of the cosine annealing learning
rate scheduling strategy, which causes the
learning rate to periodically change within a
range of 0.001. This strategy helps the model
maintain a certain level of exploration capability
during training and avoids getting stuck in local
optima. Additionally, the application of label
smoothing technology (smoothing=0.1) further
enhances the model's generalisation capability
and reduces the risk of overfitting.

4. Conclusion
This paper proposes an innovative
CNN-Transformer hybrid architecture for the
CIFAR-100 image classification task. By
seamlessly integrating the local feature
extraction capabilities of convolutional neural
networks with the global modelling capabilities
of Transformers, this architecture achieves
efficient image classification.
The main contributions of this study include: (1)
designing an efficient three-stage CNN feature
extractor that effectively reduces the
computational complexity of the subsequent
Transformer through progressive downsampling;
(2) The introduction of a learnable category
token mechanism, enabling flexible global
information aggregation; (3) The adoption of a
comprehensive data augmentation strategy,
including random cropping, rotation, and colour
jittering, significantly enhancing the model's
generalisation ability; (4) The implementation of
a complete training monitoring and evaluation
system, including visualisation analysis tools
such as loss curves and accuracy curves.
Experimental results show that the proposed
CNN-Transformer hybrid architecture achieves
excellent classification performance on the
CIFAR-100 dataset. After 100 epochs of training,
the model demonstrates stable convergence
characteristics and good generalisation ability.

The cosine annealing learning rate scheduling
strategy effectively balances training speed and
final performance, while the AdamW optimiser
combined with gradient clipping ensures training
stability.
This study provides new insights into hybrid
architecture design in the field of computer
vision. The complementary advantages of CNN
and Transformer are not only reflected in
performance improvements but more
importantly provide a flexible architectural
paradigm. This architecture can adjust the
configuration of each component according to
specific task requirements, such as CNN depth,
Transformer layer count, and attention head
count, demonstrating good scalability.
Future research directions include: (1) extending
this hybrid architecture to higher-resolution
image datasets; (2) Exploring adaptive
architecture design that dynamically adjusts
computational resource allocation based on input;
(3) Investigating knowledge distillation
techniques to transfer knowledge from large
models to lightweight versions; (4) Introducing
self-supervised pre-training strategies to further
enhance model performance using unlabelled
data. As research on visual Transformers
continues to deepen, the CNN-Transformer
hybrid architecture is expected to play a
significant role in more computer vision tasks.
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