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Abstract: Aiming at the problem of
autonomous obstacle avoidance of
autonomous underwater vehicle (AUV) in
unknown underwater environment, an
adaptive fuzzy neural network obstacle
avoidance algorithm is proposed, which
combines the logical reasoning ability of
fuzzy control and the self-learning ability of
neural network. Firstly, the obstacle
avoidance model of AUV in the plane is
established. Secondly, the structure of the
fuzzy neural network is designed. The
parameters of the fuzzy membership function
and the weights of the neural network are
optimized by using the learning ability of the
neural network, and the output error is
reduced. Finally, through the simulation of
AUV respectively in the horizontal plane and
vertical plane within the feasibility of the
proposed algorithm of obstacle avoidance.
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1. Introduction
As an important tool for marine development,
Autonomous Underwater Vehicles (AUVs) are
gradually being applied in fields such as marine
ranching, seabed exploration, seabed
topography scanning, and coastal defense and
anti-submarine warfare due to their advantages
of good concealment, flexible use, and wide
range of activity [1]. When navigating in
complex underwater environments, autonomous
obstacle avoidance capability is essential for an
AUV and a crucial guarantee for the safe
execution of its navigation tasks. As the
requirements for the precision of AUV
underwater operations become increasingly high,
the autonomous obstacle avoidance technology
of AUVs has gradually become a significant
bottleneck restricting their intelligent

development [2].
Researchers have proposed a large number of
algorithms to solve the difficult problems in
AUV autonomous obstacle avoidance
technology [3]. Among them, the Artificial
Potential Field (APF) method [4] is a typical
real-time obstacle avoidance method. It was first
proposed by Khatib in 1986. Its basic idea is to
treat the robot's movement in the environment as
motion in a virtual artificial force field, where
obstacles exert a repulsive force on the robot,
and the target point exerts an attractive force on
the robot. The resultant force of the attraction
and repulsion acts as the robot's acceleration
force to control its direction of movement and
calculate its position. The advantages of this
method are good real-time performance, simple
design, and convenient implementation. The
disadvantage is the common existence of trap
regions; it is difficult to find a feasible path
when the AUV is among multiple obstacles or
very close to an obstacle, leading to a deadlock
in obstacle avoidance. Many researchers have
proposed improved and optimized algorithms
based on the artificial potential field method
[5-7]. However, in the absence of reliable sensor
equipment and effective online recognition
methods for AUVs, the practical application of
the artificial potential field method in AUV
autonomous obstacle avoidance is subject to
many limitations. In recent years, artificial
intelligence algorithms have been gradually
applied to AUV obstacle avoidance. The
currently more common artificial intelligence
methods are mainly the Fuzzy Control method
[8] and the Neural Network method [9,10].
Fuzzy logic control has logical reasoning
capabilities but lacks self-learning ability, while
artificial neural networks have strong learning
and training capabilities but lack the ability to
process and describe fuzzy information [11].
This paper adopts a fuzzy neural network
algorithm, utilizing the fuzzy reasoning ability
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of fuzzy control and the self-learning ability of
neural networks, to make the entire
anti-collision system's environmental
adaptability more powerful.

2. AUV Obstacle Avoidance Model Analysis

2.1 Obstacle Avoidance Sonar Layout
The AUV obstacle avoidance sonar layout is
shown in Figure 1. Five obstacle avoidance
sonars are distributed at the bow of the AUV,
and one altimeter is located directly below the
bow. The forward-looking sonar and the four
surrounding sonars (up, down, left, and right)
have the same transmission beam angle. The
altimeter's transmission beam is directed
vertically downward from the AUV body to
measure the AUV's altitude from the bottom
during navigation. This layout can not only
acquire three-dimensional spatial information
about obstacles but also brings significant
economic benefits compared to using
forward-looking sonar.
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Figure 1. Obstacle Avoidance Sonar Layout
Note: 1-Forward-right sonar, 2-Forward-up
sonar, 3-Forward-left sonar, 4-Altimeter,

5-Forward-looking sonar, 6-Forward-down
sonar

2.2 Obstacle Distance and Shape Analysis
It is very difficult for an AUV to establish an
accurate and complete three-dimensional
obstacle model while navigating underwater.
The propulsion system of the AUV platform
used in this paper consists of four thrusters: up,
down, left, and right. During navigation, the
AUV changes its sailing depth by adjusting the
differential speed of the upper and lower
thrusters in the vertical plane, and changes its
heading by adjusting the differential speed of
the left and right thrusters in the horizontal
plane. However, changing both depth and
heading simultaneously may risk losing control
of the AUV, especially when sailing at high
speed with a large speed differential. Therefore,
this paper analyzes obstacles by dividing them

into horizontal and vertical planes based on the
characteristics of the carrier's thrusters and
obstacle avoidance sonar distribution, which
allows for obtaining the shape and relative
position information of obstacles in these two
planes.
For a single obstacle avoidance sonar, only the
distance between the AUV and the obstacle in
that direction can be measured. However, a
combination of three obstacle avoidance sonars
in the same plane can not only analyze the
distance to the obstacle but also obtain its shape,
slope, concavity, and convexity. Figure 2 takes
the horizontal plane as an example to analyze
the shape features of an obstacle. In the figure,

1d and 2d are the distances to the obstacle
detected by the forward-looking sonar and the
front-left sonar, respectively.

Figure 2. Bow Horizontal Sonar
Arrangement

0d is the difference in the transducer distance
of the front-left sonar and the forward-looking
sonar along the central axis of the AUV.  is
the angle between the other four directional
obstacle avoidance sonars and the
forward-looking sonar. If

012 cos ddd  (1)
then it is considered that there is a planar
obstacle to the front-left of the AUV's course.
Similarly, the distance information of obstacles
detected by the obstacle avoidance sonars in
other directions and the distance information of
the obstacle detected by the forward-looking
sonar can also form a rough shape of the
obstacle. By integrating the distances to the
obstacle obtained from the five obstacle
avoidance sonars, a rough three-dimensional
shape of the obstacle can be obtained. Obstacle
avoidance decisions and control are then made
based on the shape information of the obstacle.

2.3 Auv Obstacle Avoidance Model
The AUV's obstacle avoidance model is
established in the AUV's horizontal plane
two-dimensional reference coordinate system, as
shown in Figure 3.
The AUV's starting position coordinates are
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),( 00 YX , the target point position coordinates
are ),( gg YX , and the AUV's position
coordinates at time t are ),( tt YX . Then, the
AUV's position coordinates at time t+1 are

),( 11  tt YX .

Figure 3. AUV Horizontal Obstacle
Avoidance Model

The distance and angle from the AUV's position
at time t to the target position are represented by
the target course distance tS and the target
course angle St , respectively [10]:

22
t )()(S tgtg YYXX  (2)

 



















































180,180

0,0,0

0,0,90

0,0,90

0
,0

,180arctan

0
,0

,180arctan

0,arctan

S

S

t

tgtg

tgtg

tgtg

tg

tg

tg

tg

tg

tg

tg

tg

tg
tg

tg

t

XXYY

XXYY

XXYY

XX
YY

XX
YY

XX
YY

XX
YY

XX
XX
YY




(3)

Assuming the AUV's sailing speed at time t is
tV and the heading angle is Vt , then the

AUV's sailing speed at time t+1 is 1tV  and
the heading angle is 1Vt . The target angle tT
is the angle between the AUV's target course
angle St and the current heading angle Vt at
time t. Then, the AUV's target angle at time t+1
is 1tT  .

  180,180,Tt VtVtSt  (4)
tVtt M  1V (5)

tVtStVtStt M   1111T (6)

Here, tM represents the AUV's turning angle
at time t, St is calculated from the fusion of
the Inertial Navigation System (INS) and the
Doppler Velocity Log (DVL). Vt is measured
by the INS.
To ensure the AUV's safety during the obstacle
avoidance process, setting the limit distance for
avoidance is particularly important. Whether the
AUV can safely bypass the obstacle and
continue sailing towards the target point
depends on important factors such as the AUV's
current sailing speed, the overall length of the
AUV, and the AUV's turning radius at the
current speed. Assuming the limit distance for
obstacle avoidance is cS , its relationship with
the current turning radius tR is as follows:

lRS tc  (7)
Here, l is the overall length of the AUV, and

tR is the maximum turning radius at speed tV
at time t. Because the AUV's maximum turning
radius differs at different sailing speeds, and the
AUV's speed is constantly changing during its
journey from the starting point to the target
point, especially during obstacle avoidance
when it may face deceleration, the limit distance
for obstacle avoidance continuously changes
with the AUV's sailing speed at different times.
This avoids the problem of path redundancy
caused by a single, fixed safety distance,
improving the system's real-time performance
and flexibility.

3. Obstacle Avoidance Algorithm Design

3.1 Fuzzy Neural Network Structure Design
By combining a BP neural network with fuzzy
logic control, the characteristics of error
backpropagation in the BP neural network are
used to modify the weights and the center and
width of the Gaussian membership function,
forming a closed-loop control algorithm. The
algorithm in this paper selects three
single-output fuzzy neural networks to output
the heading angle H, pitch angle P, and sailing
speed V, respectively. The heading angle H is
mainly affected by the distance information
from the front-left ( 1S ), front-right ( 2S ), and
forward ( 3S ) obstacle avoidance sonars, as well
as the target angle in the horizontal direction
( HT ). This network is a 4-input, single-output
fuzzy neural network. The pitch angle P is
mainly affected by the distance information
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from the forward ( 3S ), forward-up ( 4S ), and
forward-down ( 5S ) obstacle avoidance sonars,
and the target angle in the vertical direction ( VT ).
Therefore, this network is also a 4-input,
single-output fuzzy neural network. The sailing
speed V is affected by the distance information
from all five obstacle avoidance sonars, making
this network a 5-input, single-output fuzzy
neural network.
The three networks mentioned above are all
designed as 5-layer networks, with each layer
having a similar function. Taking the network
that outputs the heading angle H as an example,
the network structure is shown in Figure 4.

Figure 4. Fuzzy Neural Network Structure
The first layer is the input layer. The input node
vector ],,,[ 321 HTSSSP  is composed of
information about the surrounding underwater
environment and heading collected by three
obstacle avoidance sonars and the AUV's
onboard inertial navigation system. Here, 1S ,

2S , 3S are the distance information to
surrounding obstacles collected by the front-left,
front-right, and forward obstacle avoidance
sonars, respectively, and HT is the angle
between the AUV's current heading angle and
the target heading angle. The main function of
this layer is to quantify the input crisp values,
transforming them from the physical domain to
the fuzzy domain. By comparing with the limit
obstacle avoidance distance cS at that moment
and the sonar's maximum detection distance D,
the obstacle distance information, 1S , 2S , 3S
is divided into three levels: Inside the limit
safety distance (I), Outside the limit safety
distance (O), and the sonar's detection distance
(D). The input angle is fuzzed into 7 levels:

},,,,,,{ PBPMPSZONSNMNB . These 7 levels
respectively represent the angular deviation
information of the AUV's current heading
relative to the target heading (Negative Big,
Negative Medium, Negative Small, Zero,
Positive Small, Positive Medium, Positive Big).
Here, deviation to the left of the target direction

is considered positive.
The second layer is the membership function
layer. This layer is a hidden layer composed of 4
nodes. Its main role is to perform fuzzification
on the input vector, using a Gaussian function as
the conversion function to transform crisp
values into fuzzy values.

))(exp()( 2
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 ni ,,2,1  (8)

Here, ic is the center value of the Gaussian
function, i is the width of the Gaussian
function, n is the node number, x is the input
crisp value vector, and the output vector after
fuzzification is ],,,[ 4321 U .
The third and fourth layers jointly complete the
fuzzy inference process. The third layer
completes the rule antecedents; the fourth layer
completes the rule consequents, performing
fuzzy inference and outputting a fuzzy value.
The fifth layer is the output layer. Its function is
to perform defuzzification, transforming the
fuzzy value from the fuzzy domain back to the
physical domain.
The outputs of the three networks provide the
output action space vectors for the AUV's
heading angle H, pitch angle P, and sailing
speed V. Here, H represents the magnitude of
the AUV's horizontal turn output by the system,
and H is divided into 5 levels: TLL (Turn Left
Large), TL (Turn Left), TF (Go Straight), TR
(Turn Right), TRR (Turn Right Large). P
represents the magnitude of the AUV's vertical
turn output by the system, and P is divided into
5 levels: TTU (Tilt Up Large), TU (Tilt Up),
TZO (Zero Pitch), TD (Tilt Down), TDD (Tilt
Down Large). V represents the magnitude of the
AUV's speed output by the system, and the
speed V is divided into 5 levels: FB (Fast, 4m/s),
FS (Slightly Fast, 3m/s), LB (Slightly Slow,
2m/s), LS (Slow, 1m/s), ZO (Zero Speed, 0m/s).
These three quantities represent the three
dimensions of the output state space vector.

3.2 Fuzzy Neural Network Training Process
After determining the network structure, data
from typical environments is used to train the
network to determine the center and width
values of the Gaussian functions, as well as the
connection weights between the fourth and fifth
layers. The connection weights of the other
layers are set to a fixed value of 1. The network
training process is shown in Figure 5.
Let the performance index function be:
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2)arg(
2
1 outputettE  (9)

Where, ett arg is the target output, and
output is the actual network output.

Figure 5. Fuzzy Neural Network Training
Flow Chart

The network weight learning algorithm is as
follows:
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Where, k is the sample data sequence number,
nj ,2,1  is the number of nodes in the fourth

layer, and w is the learning rate.
The adjustment algorithm for the Gaussian
membership function is as follows:
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Where, c is the learning rate for c , and 
is the learning rate for  .
Figure 6 shows the neural network learning
curve for the heading angle H, where it can be
clearly seen that the output error decreases
significantly as the number of training steps
increases.

4. Obstacle Avoidance Simulation
To verify the effectiveness and feasibility of the
designed adaptive fuzzy neural network obstacle

avoidance algorithm, a simulation is conducted.
In the simulation experiment, a
three-dimensional rectangular obstacle

mmm 50300100  is established in the coordinate
system. The AUV's starting point is set to

)200,250,0( mmm , and the target point
coordinates are )200,250,500( mmm . The AUV's
sailing speed range is simulated and set to

]4,0[ smsm . The AUV's initial heading angle
in the horizontal direction is 0 , and the pitch
angle is 0 . The maximum detection distance
of the obstacle avoidance sonar is 50 m. The
AUV's navigation is represented by small dots.
Obstacle avoidance during navigation is
controlled by the designed fuzzy neural network
algorithm. The algorithm's inputs are the
distance to the obstacle

],,,,[ 54321 SSSSS detected by the sonar, the angle
to the target HT in the horizontal direction, and
the angle to the target VT in the vertical
direction. The algorithm's outputs are the
heading angle H, pitch angle P, and speed V,
respectively. H, P, and V are used to adjust the
AUV's turning angle and sailing speed in
real-time during the simulation. Here, for the
heading angle H, 0° is parallel to the X-axis, and
counter-clockwise rotation in the horizontal
plane is the positive direction. For the pitch
angle P, 0° is parallel to the X-axis, and
counter-clockwise rotation in the vertical plane
is positive. The AUV's sailing speed is
represented by the distance between two
adjacent dots; a smaller distance represents a
slower speed, and a larger distance represents a
faster speed. Finally, the curve fitted by the
small dots represents the AUV's navigation
trajectory.

Figure 6. Neural Network Learning Curve
Figure 7 shows the AUV's obstacle avoidance
trajectories in the horizontal and vertical planes
during the simulation. Trajectory 1 is the
avoidance trajectory in the vertical plane, and
Trajectory 2 is the avoidance trajectory in the
horizontal plane. It can be seen that the AUV
begins obstacle avoidance at a distance of 50 m
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from the obstacle (the sonar's maximum
detection distance). In the end, it successfully
avoids the obstacle to reach the target point.

Figure 7. Obstacle Avoidance Trajectories in
Horizontal and Vertical Planes

Figures 8 and 9 show the change curves of
velocity V and pitch angle P with time during
obstacle avoidance in the vertical plane,
respectively. Figures 10 and 11 show the change
curves of velocity V and heading angle H with
time during obstacle avoidance in the horizontal
plane, respectively. It can be seen that when an
obstacle is detected, the control algorithm
automatically adjusts the speed and the pitch or
heading angle. This enables the avoidance of the
obstacle. After avoiding the obstacle, the speed
returns to its maximum, and the pitch or heading
angle points towards the target.

Figure 8. Curve of Obstacle Avoidance
Velocity in Vertical Plane with Time

Figure 9. Curve of pitch angle of obstacle
avoidance in vertical plane with time

Figure 10. Curve of Obstacle Avoidance
Velocity in Horizontal Plane with Time

Figure 11. Curve of Heading Angle of
Obstacle Avoidance in Horizontal Plane with

Time

5. Conclusion
This paper addresses the problem of
autonomous obstacle avoidance for an AUV in
an unknown underwater environment. It
proposes an autonomous obstacle avoidance
control algorithm based on a fuzzy neural
network. The algorithm uses three single-output
fuzzy neural networks to control the three
dimensions of the AUV's navigation and
obstacle avoidance process. The algorithm
combines the advantages of fuzzy control and
neural networks, making the AUV's autonomous
obstacle avoidance process more intelligent. The
simulation results show that the autonomous
obstacle avoidance control algorithm based on
the fuzzy neural network, by coordinately
controlling the sailing speed V, heading angle H,
and pitch angle P, can achieve obstacle
avoidance for the AUV in both horizontal and
vertical planes within an unknown underwater
environment. In a real marine environment, an
AUV's navigation is affected by many factors.
This paper only verified the feasibility of the
algorithm in an ideal simulation environment.
Therefore, the next step requires testing the
algorithm in a real-world environment.

References
[1]Zheng Zeng, Lian Lian, Karl Sammut,

Fangpo He, Youhong Tang, Andrew
Lammas. A survey on path planning for
persistent autonomy of autonomous
underwater vehicles. Ocean
Engineering,2015,110.

[2]Guo Yiping, Wang Yimin, Ren Yuanzhou.
Research on AUV Trajectory Tracking
Control Technology Based on Line-of-Sight
Guidance Method. Acoustics and
Electronics Engineering,
2018(04):32-36+40. (in Chinese)

[3]Yao Peng, Xie Zexiao. An AUV
Autonomous Obstacle Avoidance Method

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 3 No. 3, 2025 29

Copyright @ STEMM Institute Press http://www.stemmpress.com



Based on Modified Navigation Vector Field.
Acta Automatica Sinica:1-11(2019-02-19).
(in Chinese).

[4]Johann Borenstein, Yoram Koren.Real-time
avoidance for fast mobile robots. IEEE
Transactions on Systems, Man and
Cybernetics,1989, 19(5):1179-1187.

[5]Yang Jian, Meng Fanchen. Research on
Obstacle Avoidance Motion Method for
Micro AUV Based on Artificial Potential
Field Method. Mine Warfare and Ship
Protection, 2017, 25(04):67-71. (in Chinese)

[6]Xing Mingzhi. Research on AUV Planning
and Obstacle Avoidance Method Based on
Fish Swarm-Artificial Potential Field
Algorithm. Harbin Engineering University,
2024. (in Chinese)

[7]Pan Yunwei, Li Min, Zeng Xiangguang, et al.
Obstacle Avoidance and Path Planning for
Autonomous Underwater Vehicle Based on
Artificial Potential Field and Improved
Reinforcement Learning. Acta
Armamentarii, 2025, 46(04):72-83. (in

Chinese)
[8]Xu Hongli, Feng Xisheng. Research on AUV

Fuzzy Obstacle Avoidance Method Based
on Event Feedback Monitoring. Proceedings
of the Conference on Automation and
Advanced Integration Technologies (II),
2007:704-708. (in Chinese)

[9]Yu Jiancheng, Zhang Aiqun, Wang Xiaohui,
Su Lijuan. Direct Adaptive Control for
Underwater Robot Based on Fuzzy Neural
Network. Acta Automatica Sinica,
2007(08):840-846. (in Chinese)

[10]Zhang Yibo, Gao Bingpeng. Research on
AUV Path Planning Based on Deep
Reinforcement Learning. Journal of
Northeast Normal University (Natural
Science Edition), 2025, 57(01):53-62. (in
Chinese)

[11]Kong Lingwen, Li Pengyong, Du Qiaoling.
Design of Closed-loop Control System for
Autonomous Navigation of a Hexapod
Robot Based on Fuzzy Neural Network.
Robot, 2018, 40(01):16-23. (in Chinese)

30 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 3 No. 3, 2025

http://www.stemmpress.com Copyright @ STEMM Institute Press




