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Abstract: Glycosylation critically regulates
protein folding, stability, and cellular
signaling in neurodegenerative disorders;
however, its role in glaucoma pathogenesis
remains underexplored. We aimed to
investigate differentially expressed
glycosylation-related genes (GRGs) in
glaucoma astrocytes and explore their
connections with immune responses, an
aspect that has not been systematically
addressed in prior computational studies. We
integrated two glaucoma-related microarray
datasets (GSE2378 and GSE9944) comprising
13 glaucoma and 42 control human astrocyte
samples. Differential expression analysis and
functional enrichment assessments were
conducted using standard bioinformatics
approaches. We developed protein–protein
interaction networks, identified essential
genes, and evaluated immune-related gene
expression through single-sample Gene Set
Enrichment Analysis (GSEA). The study
identified 42 differentially expressed GRGs
and seven hub genes (SEC23A, BET1, ARCN1,
COPB2, VCP, UBC, and SEC61B) involved in
protein trafficking and secretory pathway
regulation. Functional analysis revealed
significant enrichment in glycoprotein
metabolic processes and inflammatory
pathways. GSEA highlighted the involvement
of Wnt/β-catenin signaling and interleukin-23
pathways. Six hub genes demonstrated
substantial diagnostic capacity. Analysis of
Immune cell infiltration revealed significant
alterations in eight immune cell populations,
with activated CD4+ T cells showing positive
correlations with all hub genes. These
findings suggest that astrocyte glycosylation

contributes to glaucoma progression and may
be associated with immune dysregulation,
providing new insights into disease
pathogenesis and identifying potential
diagnostic biomarkers and therapeutic
targets.
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1. Introduction
Glaucoma represents one of the leading causes
of irreversible blindness worldwide, featuring
the gradual degeneration of retinal ganglion cells
(RGCs) and optic nerve pathology [1]. Recent
research has highlighted that in addition to the
loss of RGCs, other cells such as astrocytes
contribute significantly to glaucoma
pathogenesis [2]. These cells contribute toward
neuroinflammation and disrupt the balance of
the retinal microenvironment. However, the
precise molecular pathways driving astrocyte
impairment in glaucoma remain unclear.
Growing evidence demonstrates that astrocytes
are significantly involved in glaucoma
pathogenesis. Previous study of glaucomatous
tissues have revealed that glial cell activation
predominantly affects astrocytes, accounting for
62.5% of observed glial changes[3].
Glycosylation, an essential post-translational
modification, plays crucial roles in protein
folding, cellular signaling, and immune
regulation[4]. In central nervous system diseases
such as Alzheimer's disease and Parkinson's
disease, astrocyte glycosylation has been shown
to be critical for maintaining cellular
homeostasis, regulating signal transduction
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pathways, and modulating neuroinflammatory
responses [5]. Studies have demonstrated that
glycosylation dysfunction leads to protein
aggregation, Golgi fragmentation, and altered
protein processing, thereby contributing to
neurodegeneration [6-7]. However, the specific
involvement of glycosylation-related genes
(GRGs) in astrocyte dysfunction during
glaucoma progression remains unexplored.
Despite extensive re-analyses of public
glaucoma datasets focusing on various molecular
mechanisms, no systematic investigation has
specifically examined astrocyte glycosylation
machinery or its immunological implications in
human glaucoma, representing a critical
knowledge gap.
Although glycosylation modifications play
important roles in neurodegenerative diseases,
their specific involvement in glaucoma astrocyte
dysfunction remains unclear. This study aims to
address three key questions: which
glycosylation-related genes are differentially
expressed in glaucoma astrocytes, what
biological pathways are involved, and how these
changes relate to immune microenvironment
alterations. We hypothesize that
glycosylation-related genes are dysregulated in
glaucoma astrocytes and associated with protein
processing pathways and immune cell
infiltration patterns.
This study integrates two microarray datasets
with batch effect correction and combines
glycosylation gene screening with immune
infiltration analysis. We performed functional
enrichment analyses to reveal the biological
mechanisms associated with these genes,
identified critical hub genes through
protein-protein interaction network analysis, and
assessed immune-related gene expression
signatures to understand glycosylation-immune
interactions. This work provides the first
systematic investigation of glycosylation
machinery in human glaucoma astrocytes,
establishing a theoretical foundation for
understanding glycosylation's role in glaucoma
pathogenesis and identifying potential
biomarkers.

2. Material and Methods

2.1 Data Source and Processing
Our analysis incorporated glaucoma-relevant
transcriptomic data from the
GSE2378[8-10](Hernandez et al., 2002;

Kompass et al., 2008; Nikolskaya et al., 2009)
and GSE9944[11](Lukas et al., 2008) datasets
retrieved from the GEO database. Data
acquisition and preliminary processing were
conducted using R (The R Foundation for
Statistical Computing, Vienna, Austria) using
GEOquery v2.70.0[12] (Barrett et al., 2013;
Davis S). Both datasets consist of samples
obtained from human astrocytes. The GSE2378
dataset, which employs the GPL8300 platform,
includes seven glaucoma cases and six healthy
controls. The GSE9944 dataset, based on the
GPL571 platform, comprised 6 glaucoma
samples and 36 control samples, as shown in
Table 1. All samples from both the glaucoma
and control groups were included in the analyses
conducted in this investigation.
Table 1. GEO Microarray Chip Information

GSE2378 GSE9944
Platform GPL8300 GPL571
Species Homo sapiens Homo sapiens
Tissue Astrocytess Astrocytes
Samples in
Glaucoma group7 6

Samples in
Control group 6 36

Reference
PMID:11921203
PMID:18822132
PMID:19426536

PMID:186139
64

GEO, Gene Expression Omnibus.

2.2 GRG Curation
The GRGs were comprehensively compiled
using two integrated approaches. First, we
investigated the GeneCards[13](Stelzer et al.,
2016) knowledge repository using
“Glycosylation” as our query parameter and
identified 326 protein-coding genes with
relevance metrics exceeding 9. Second, a
systematic literature review of PubMed revealed
an additional 282 genes[14](Chen et al., 2022).
After eliminating duplicates, a final total of 518
unique GRGs was established for further
analysis, as detailed in Supplementary Table 1.

2.3 Batch effect Removal and Quality Control
The consolidated dataset, comprising 13
diseased specimens and 42 healthy controls, was
established through integration of GSE2378 and
GSE9944 data. Batch effect correction was
implemented using the sva software package
(version 3.50.0) [15](Leek et al., 2012).
Following this step, data standardization and
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probe mapping were conducted via the limma
analytical package (version 3.58.1) [16](Ritchie
et al., 2015). To evaluate sample distribution
characteristics both pre- and post-correction, we
applied dimensionality reduction through
PCA[17] (Ben Salem and Ben Abdelaziz, 2021),
a computational method that simplifies complex
datasets by identifying key components from
high-dimensional information, enabling data
representation in reduced dimensions. This
approach supports effective visualization in two
or three dimensional space, thereby clearly
revealing the fundamental properties of the
dataset.

2.4 Identification of Glycosylation-Related
Differentially Expressed Genes (DEGs)
DEGs was assessed across the merged dataset
using the “limma” package (version 3.58.1)
[16](Ritchie et al., 2015) to compare
transcriptomic patterns between glaucoma and
control samples. We applied a threshold of
|logFC| > 0 with a false discovery rate (FDR) <
0.05 to identify DEGs. This inclusive approach
was chosen to capture subtle but statistically
significant transcriptional changes in purified
astrocyte populations, where modest expression
alterations may represent important regulatory
mechanisms in glaucoma pathogenesis. Genes
were considered DEGs if they had an absolute
fold change exceeding 0, with a false discover
rate (FDR) of <0.05. Transcripts showing
positive fold changes (log fold change [logFC] >
0, FDR < 0.05) were designated as upregulated,
whereas those with negative fold changes
(logFC < 0, FDR < 0.05) were designated as
downregulated. The distribution of these DEGs
was displayed through a volcano plot
visualization created using the “ggplot2”
package (version 3.4.4).
To determine the glycosylation-related DEGs
relevant to glaucoma, we compared the
identified DEGs (|logFC| > 0 and adjusted p <
0.05) from the combined dataset with our
previously established list of GRGs. This
intersection was illustrated using a Venn
diagram. The expression profiles of the resulting
glycosylation-related DEGs were visualized
using a hierarchical clustering heatmap
generated via the “pheatmap” package (version
1.0.12).

2.5 Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)

Pathway Enrichment Analysis
Functional enrichment evaluation of
glaucoma-related DEGs was performed using
“clusterProfiler” (version 4.10.0) [18](Yu et al.,
2012). The analytical framework encompassed
GO categorization[19](Mi et al., 2019).
Enrichment significance was established using
statistical parameters of adjusted p-value of
<0.05, combined with an FDR cutoff of 0.25.
Furthermore, we performed KEGG pathway
analysis to identify biological pathways
[20](Kanehisa and Goto, 2000). The enriched
pathways were visualized using the “Pathview”
package (version 1.42.0)[21](Luo and Brouwer,
2013), which illustrates molecular interactions
and biological networks. The significance
thresholds for the pathway enrichment analysis
were consistent with those used in the GO
analysis.

2.6 Gene Set Enrichment Analysis (GSEA)
GSEA(Subramanian et al., 2005) was performed
to examine the distribution characteristics of
predefined gene sets within ranked gene lists
associated with specific phenotypes, enabling
the evaluation of their contributions to different
phenotypes. Initially, genes from our integrated
dataset were ordered based on their logFC values
by employing a comprehensive gene expression
profile. The evaluation was performed using the
“clusterProfiler” package (version
4.10.0)[22](Yu et al., 2012), with configuration
parameters including a random seed of 2020,
1,000 permutations, and gene set size limitations
spanning from 10 to 500 genes.
We used the Molecular Signatures Database
c2.cp.all.v2022.1. Hs.symbols.gmt, which
includes a comprehensive collection of canonical
pathways, totaling 3,050 gene sets. To assess
statistical significance, we established the
criteria of adjusted p-values below 0.05, and an
FDR q-value of <0.25. Normalized enrichment
scores and their corresponding significance
values were calculated to identify pathways that
were significantly associated with glaucoma.

2.7 PPI Network Construction and Hub Gene
Identification
The PPI network was established using the
STRING database(Szklarczyk et al., 2019), with
a minimal interaction score cutoff of 0.4.
Subsequently, network evaluation was
conducted using Cytoscape software (version
3.8.2; Institute for Systems Biology, Seattle, WA,
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USA)[23](Shannon et al., 2003), employing the
“cytoHubba”[24](Chin et al., 2014) plugin to
determine hub genes among the previously
characterized DEGs.

2.8 Construction of Regulatory Networks
(Transcription Factor [TF]–mRNA and Micro
[mi]RNA–mRNA)
To explore the regulatory mechanisms linked to
the identified hub genes, we established two
types of regulatory networks: TF–mRNA and
miRNA–mRNA. Using the ChIPBase
database[25](Zhou et al., 2017), we identified
transcription factors that may regulate
glycosylation-related DEGs. Connections among
regulatory proteins and downstream targets were
mapped through Cytoscape software
[23](Shannon et al., 2003), which allowed for
the construction of a comprehensive TF–mRNA
regulatory network.
Additionally, to examine post-transcriptional
regulation, we analyzed miRNA–mRNA
interactions using the StarBase v3.0
database[26](Li et al., 2014). This analysis led
us to identify miRNAs associated with
glycosylation-related DEGs, and we
subsequently created an miRNA–mRNA
regulatory network using Cytoscape to
effectively illustrate these interactions.

2.9 Validation of Hub Gene Expression
To assess the biological relevance of the
identified hub genes, we performed expression
comparison of glaucoma and control samples
from GSE2378 and GSE9944. We visualized the
expression patterns of these hub genes using box
plots, which effectively illustrated the
distribution of expression levels.

2.10 Diagnostic Performance Analysis
Diagnostic performance of core genes was
evaluated through ROC analysis via pROC
package (v1.18.5) [27](Robin et al., 2011). The
area under the curve (AUC) was computed for
each hub gene to quantify its capacity in
distinguishing patients with glaucoma from
healthy controls. We established interpretation
guidelines for diagnostic accuracy based on
AUC thresholds: superior diagnostic capability
was indicated by AUC scores of 0.9–1.0, while
moderate discriminatory power corresponded to
values of 0.7–0.9, and limited diagnostic utility
was reflected by scores of 0.5–0.7. This
analytical approach yielded a quantitative

validation, demonstrating the prospective utility
of these pivotal genes as diagnostic markers of
glaucoma.

2.11 Single-Sample GSEA (ssGSEA)
We conducted ssGSEA to evaluate
immune-related gene expression signatures
within astrocyte samples, aiming to explore the
potential associations between astrocytes and
immune regulatory mechanisms at the
transcriptional level[28] (Xiao et al., 2020). This
method evaluated immune transcriptional
signatures across multiple cell types. Enrichment
scores generated a matrix reflecting molecular
immune signatures within astrocytes.
This analytical approach enabled the assessment
of immune-associated transcriptional programs
corresponding to multiple immune cell subsets,
including activated CD8+ T lymphocytes,
stimulated dendritic cells, gamma delta T cells,
natural killer cells, and regulatory T cells.
Enrichment scores were calculated to create an
immune-related gene expression matrix that
represented immune-associated molecular
changes within astrocytes rather than actual
immune cell infiltration.

2.12 Differential Immune Cell Analysis
We performed a comparative assessment of
immune-related gene expression signatures
between glaucoma specimens and healthy
controls using the "ggplot2" package (version
3.4.4). This evaluation identified distinct
immune-associated transcriptional patterns
within astrocytes that exhibited statistically
significant variations between the experimental
cohorts, which were subsequently chosen for
additional correlation examinations. To
investigate the interrelationships among these
immune-related gene signatures, we applied
Spearman's rank correlation methodology, with
the findings displayed using the "pheatmap"
package (version 1.0.12).

2.13 Hub Gene–Immune Cell Correlation
Analysis
Relationships among hub genes and immune
cells were assessed by Spearman's correlation
analysis. Only the correlations that achieved
statistical significance (p < 0.05) were retained
and illustrated through bubble plots created
using the “ggplot2” package (version 3.4.4).

3. Results
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3.1 Study Design and Workflow

Figure 1. Schematic Workflow of the Study
Design

The analysis pipeline includes data integration,
differential expression analysis, identification of
glycosylation-related DEGs, functional
enrichment analyses (GO, KEGG, and GSEA),
protein-protein interaction network analysis, hub
gene identification, expression validation, and
immune cell infiltration analysis. GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes
and Genomes; GSEA: Gene Set Enrichment
Analysis; PPI: Protein-Protein Interaction; ROC:

Receiver Operating Characteristic; ssGSEA:
Single-Sample Gene Set Enrichment Analysis.
To comprehensively investigate the roles of
glycosylation-associated genes in glaucoma
pathogenesis, we developed an integrated
bioinformatics pipeline (Figure 1). Our
analytical framework commenced with the
concurrent extraction of GRGs and DEGs from
consolidated glaucoma-associated datasets.
Through the intersection of these genetic
signatures, we identified glycosylation-related
DEGs. Subsequently, we executed dual
analytical streams and functional annotation
analysis incorporating GO terms and KEGG
pathway mapping to elucidate the biological
relevance of glycosylation-related DEGs, while
GSEA was applied across the entire
transcriptomic landscape. Subsequently, we
constructed PPI networks to identify central hub
genes. These pivotal genes were
comprehensively evaluated using four distinct
methodological approaches: construction of
regulatory circuits incorporating TFs and
miRNAs, comparative expression profiling,
ROC curve assessment for diagnostic capability
evaluation, and correlation analysis with
immune cell infiltration dynamics through
ssGSEA.

3.2.Integration and Batch Effect Removal of
Glaucoma Datasets

Figure 2. Assessment of Batch Effect Removal in Integrated Glaucoma Datasets.
(A) Box plots showing gene expression
distribution before batch effect removal. (B) Box

plots demonstrating normalized expression
distribution after batch effect removal. (C)
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Principal Component Analysis (PCA) plot
before batch effect removal, showing distinct
clustering by dataset. (D) PCA plot after batch
effect removal, showing improved integration of
datasets. Blue represents samples from GSE2378
and purple represents samples from GSE9944.
We merged GSE2378 and GSE9944 microarray
datasets utilizing “sva” package for batch
correction. Correction efficacy was evaluated
through expression distribution analysis and
dimensionality reduction approaches. Box plots

illustrated gene expression patterns pre- and
post-correction (Figure 2A, B). Additionally,
PCA was applied to assess sample clustering
characteristics (Figure 2C, D). Results from both
visualization methods confirmed effective batch
correction across all specimens in the
consolidated dataset.

3.3 Identification of Glycosylation-Related
DEGs

Figure 3. Identification of Glycosylation-Related Differentially Expressed Genes in Glaucoma.
(A) Volcano plot showing the distribution of
differentially expressed genes between glaucoma
and control samples. (B) Venn diagram
illustrating the intersection between
differentially expressed genes (DEGs) and
glycosylation-related genes (GRGs) derived
from GeneCards database (518 total genes, see
Supplementary Table 1) to identify
Glycosylation-related DEGs. (C) Heatmap
showing the expression patterns of 42 identified
Glycosylation-related DEGs across glaucoma
(orange-red) and control (pink-purple) samples.
Orange indicates high expression and blue
indicates low expression in the heatmap.
We performed differential gene expression
profiling of the consolidated dataset by
comparing glaucoma specimens with healthy
control samples using the “limma” package. This
computational approach revealed a
comprehensive set of 1,058 DEGs satisfying the
selection criteria of |logFC| > 0, combined with
an adjusted p-value of <0.05. Within this gene
signature, 587 transcripts were upregulated (log
FC > 0, adj. p < 0.05), whereas 471 were
downregulated (log FC < 0, adj. p < 0.05). The
distribution of the expression patterns of these

DEGs was visualized using a volcano plot
(Figure 3A).
To further investigate glycosylation-specific
changes in glaucoma, we performed a Venn
diagram analysis to determine the overlap
between the DEGs (|logFC| > 0, adj. p < 0.05)
and our curated list of GRGs (Figure 3B). The
GRGs comprised 518 genes derived from
GeneCards database (keyword: "Glycosylation",
protein-coding genes, Relevance score > 9,
yielding 326 genes) and published work (282
genes) (Chen et al., 2022), with duplicates
removed (complete gene list in Supplementary
Table 1). This analysis revealed 42 DEGs
associated with glycosylation, including
ACTR1A, ARCN1, ARL6IP1, ATP6AP2,
B4GALT1, BET1, CAD, CAPZB, COPB2, DAD1,
DCTN5, EXTL3, FKTN, FUCA1, GRIA1,
HCFC1, HSPD1, IDUA, MAN2B2, MAN2C1,
MGAT1, NAGA, PIGL, PLOD3, PSEN1, RAB1A,
RAD23B, RNF139, RPS28, SEC23A, SEC31A,
SEC61B, SLC35D2, SLC7A11, ST3GAL1,
STT3A, TCN2, TRAPPC3, TRIM13, UBC,
UBE2J1, and VCP. We analyzed and visualized
the expression patterns of these
glycosylation-related DEGs across different
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sample groups using a hierarchical clustering
heatmap created using the “pheatmap” package
(Figure 3C).

3.4.Functional Enrichment Analysis of
Glycosylation-Related DEGs

Figure 4. GO and KEGG Enrichment Analysis for of Glycosylation-Related Differentially
Expressed Genes

(A) Bar plot showing significantly enriched GO
terms and KEGG pathways, with bar length
representing-log10 (adjusted p-value). (B-E)
Network visualization of enriched terms in
biological process (B), cellular component (C),
molecular function (D), and KEGG pathways
(E). Pink nodes represent enrichment terms,
orange nodes represent genes, and connecting
lines indicate relationships. Node size
corresponds to the number of associated genes.
All analyses were performed with thresholds of
adj.p < 0.05 and FDR < 0.25.
To systematically explore the distribution
patterns of glycosylation-related DEGs across
broader biological processes and signaling
pathways beyond their known glycosylation
functions, we employed systematic functional
annotation using GO databases and KEGG
resources. Our investigation encompassed 42
glycosylation-related DEGs and identified
substantial enrichment patterns across diverse
biological mechanisms and metabolic networks,
adhering to rigorous statistical thresholds with
corrected p-values of <0.05, and FDR
maintained below 0.25 (Table 2). Functional
categorization through GO analysis
demonstrated that these genes exhibited
preferential involvement in fundamental cellular
mechanisms, with particular emphasis on the
protein glycosylation machinery and
transmembrane trafficking processes. The most
significantly enriched biological process terms

included glycoprotein metabolism, ER-to-Golgi
vesicular trafficking, macromolecular
modification, and protein glycosylation
processes. Regarding cellular components, the
analysis highlighted strong associations with key
organelles involved in protein modification and
trafficking, particularly the rough ER, ER
protein-containing complexes, Golgi trans
cisternae, transport vesicles, and coated vesicles.
Regarding molecular functions,
glycosylation-related DEGs showed significant
enrichment in activities crucial for glycosylation,
including hydrolase activity that specifically
hydrolyzes O-glycosyl compounds, hydrolase
activity targeting glycosyl bonds,
glycosyltransferase activity, hexosyltransferase
activity, and uridine
diphosphate-glycosyltransferase activity.
KEGG pathway analysis further supported our
findings, revealing gene involvement in critical
processes including ER protein processing,
N-glycan biosynthetic pathways, glycan
degradation, and neurodegeneration-associated
networks. Enrichment results for functional
categories and molecular pathways are displayed
in bar graph format (Figure 4A). Network
visualizations were constructed to illustrate
gene-term relationships across biological
processes (Figure 4B), cellular components
(Figure 4C), molecular functions (Figure 4D),
and metabolic pathways (Figure 4E). In these
network representations, connecting lines
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indicate associations between molecules and
functional categories, while node size reflects
the gene count for each term.

3.5 Gene Set Enrichment Analysis

Figure 5. Gene Set Enrichment Analysis of Glaucoma-Associated Pathways.
(A) Overview of enrichment plots showing
seven significantly enriched biological pathways.
(B-G) Individual enrichment plots for key
pathways: Wnt/β-catenin signaling regulation
(B), IL-23 pathway (C), MAPK6/MAPK4
signaling (D), IL-12 pathway (E), IL-12
secondary pathway (F), and negative regulation
of NOTCH4 signaling (G). All pathways shown
met the significance criteria of adj.p < 0.05 and
FDR < 0.25.
To assess the functional implications of
transcriptomic alterations across the entire
genome in glaucoma pathogenesis, we
implemented GSEA using integrated
transcriptional profiles derived from our
consolidated dataset. This analytical approach
facilitated the comprehensive exploration of

diverse cellular mechanisms, subcellular
compartments, and biochemical pathways linked
to the complete spectrum of expressed
transcripts, extending beyond the exclusive
examination of differentially regulated genes
(Figure 5A and Table 3).
GSEA revealed significant enrichment (adjusted
p < 0.05, FDR < 0.25) in several key signaling
pathways and biological functions. Notably, the
analysis showed substantial enrichment in the
modulation of Wnt/β-catenin signaling through
small molecule compounds (Figure 5B), the
interleukin (IL)-23 pathway (Figure 5C), and the
mitogen-activated protein kinase
(MAPK)6/MAPK4 signaling pathways (Figure
5D). Furthermore, we identified two distinct
IL-12 signaling cascades (Figure 5E, F) and
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observed the negative regulation of neurogenic
locus notch homolog protein 4 signaling (Figure
5G), indicating intricate interactions among the
pathways involved in the pathogenesis of

glaucoma.

3.6 PPI Network Analysis and Hub Gene
Identification

Figure 6. Protein-Protein Interaction Network Analysis and Hub Gene Identification.
(A) PPI network of Glycosylation-related DEGs
constructed using STRING database. (B-F) Top
10 ranked genes identified by different
topological algorithms: MCC (B), MNC (C),
Degree (D), EPC (E), and Closeness (F). Node
colors transition from red to yellow indicating
decreasing importance scores. (G) Venn diagram
showing the intersection of top 10 ranked genes
across all five algorithms, identifying seven
consensus hub genes. Glycosylation-related
DEGs: Glycosylation-Related Differentially
Expressed Genes; PPI: Protein-Protein
Interaction Network.
An interaction network among the 42
glycosylation-related DEGs was established
using the STRING database (Figure 6A). The
analysis of this network showed significant
interactions among 35 of the
glycosylation-related DEGs, which included
ACTR1A, MGAT1, RAB1A, HSPD1, SLC35D2,
CAPZB, B4GALT1, STT3A, PSEN1, HCFC1,
DAD1, TRIM13, RNF129, NAGA, ARL6IP1,
RPS28, ST3GAL1, MAN2B2, FUCA1, RAD23B,
MAN2C1, DCTN5, EXTL3, IDUA, TRAPPC3,

UBE2J1, VCP, SEC23A, UBC, GRIA1, COPB2,
SEC61B, SEC31A, BET1, and ARCN1.
To identify the most crucial genes within this
network, we utilized five different topological
analysis algorithms using the “cytoHubba”
plugin in Cytoscape: MCC, MNC, Degree, EPC,
and Closeness. The top ten genes identified by
each algorithm are represented in separate
networks (Figure 6B–F), with the transition of
node colors from red to yellow indicating
decreasing importance scores. Through
intersection analysis of the top-ranked genes
from all five algorithms (Figure 6G), we
successfully identified seven consistent hub
genes: SEC23A, BET1, ARCN1, COPB2, VCP,
UBC, and SEC61B.

3.7 Construction of Hub Gene Regulatory
Networks
(A) mRNA-TF regulatory network. Orange
nodes represent hub genes (mRNA), and purple
nodes represent transcription factors. (B)
mRNA-miRNA regulatory network. Orange
nodes represent hub genes (mRNA), and green
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nodes represent miRNAs. TF: Transcription
Factor.
To explore the regulatory mechanisms of the key
genes, we created two distinct types of
regulatory networks using various databases.
First, we utilized the ChIPBase database to
identify transcription factors associated with hub

genes, which allowed us to construct an
mRNA–TF regulatory network. This network,
visualized using the Cytoscape software (Figure
7A), included five glycosylation-related DEGs
and 28 transcription factors, and their
interactions are detailed in Supplementary Table
2.

Figure 7. Regulatory Network Analysis of Hub Genes.
Table 2. Results of GO and KEGG Enrichment Analysis for Glycosylation-Related DEGs

Ontology ID Description GeneRatio BgRatio pvalue p.adjust
BP GO:0009100glycoprotein metabolic process 14/42 386/18800 5.87e-14 6.5e-11

BP GO:0006888endoplasmic reticulum to Golgi
vesicle-mediated transport 9/42 129/18800 9.36e-12 5.18e-09

BP GO:0006486protein glycosylation 10/42 225/18800 5.2e-11 1.44e-08
BP GO:0043413macromolecule glycosylation 10/42 225/18800 5.2e-11 1.44e-08
BP GO:0070085glycosylation 10/42 244/18800 1.15e-10 2.55e-08
CC GO:0005791rough endoplasmic reticulum 6/42 79/19594 1.65e-08 3.66e-06

CC GO:0140534endoplasmic reticulumprotein-containing complex 6/42 125/19594 2.6e-07 2.87e-05

CC GO:0030133transport vesicle 8/42 402/19594 1.88e-06 0.0001
CC GO:0000138Golgi trans cisterna 3/42 12/19594 1.99e-06 0.0001
CC GO:0030135coated vesicle 7/42 290/19594 2.51e-06 0.0001

MF GO:0004553hydrolase activity, hydrolyzingO-glycosyl compounds 5/42 94/18410 2.28e-06 0.0003

MF GO:0016798hydrolase activity, acting on glycosylbonds 5/42 144/18410 1.84e-05 0.0014

MF GO:0016757glycosyltransferase activity 6/42 271/18410 3.24e-05 0.0016
MF GO:0016758hexosyltransferase activity 5/42 198/18410 8.42e-05 0.0031
MF GO:0008194UDP-glycosyltransferase activity 4/42 144/18410 0.0003 0.0094

KEGG hsa04141 Protein processing in endoplasmic
reticulum 8/35 171/8164 4.57e-07 3.02e-05

KEGG hsa00513 Various types of N-glycan biosynthesis 4/35 39/8164 2.09e-05 0.0007
KEGG hsa00511 Other glycan degradation 3/35 18/8164 5.64e-05 0.0009
KEGG hsa00510 N-Glycan biosynthesis 4/35 50/8164 5.67e-05 0.0009

KEGG hsa05022 Pathways of neurodegeneration -
multiple diseases 8/35 476/8164 0.0007 0.0097

GO, Gene Ontology; BP, Biological Process; CC,
Cellular Component; MF, Molecular Function;
KEGG, Kyoto Encyclopedia of Genes and
Genomes; DEGs, Differentially Expressed
Genes.

Next, we developed an mRNA–miRNA
regulatory network by leveraging the StarBase
database to identify miRNAs that correlated with
hub genes. This network was also visualized
using Cytoscape (Figure 7B) and showed
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interactions between the same 5
glycosylation-related DEGs and 37 miRNAs

(comprehensive interaction data available in
Supplementary Table 3).

Table 3. Results of GSEA for Combined Datasets
ID setSize enrichmentScore NES pvalue p.adjust qvalue rank
REACTOME_NEGATIVE_REGULATION_OF_NOTC
H4_SIGNALING 53 0.65 2.32 4.46E-08 1.90E-06 1.51E-06 2771

PID_IL12_2PATHWAY 60 0.54 1.95 4.29E-05 0.0007 0.0006 1169
BIOCARTA_IL12_PATHWAY 19 0.67 1.91 0.001 0.0103 0.0082 1013
REACTOME_GENE_AND_PROTEIN_EXPRESSION_
BY_JAK_STAT_SIGNALING_AFTER_INTERLEUKI
N_12_STIMULATION

31 0.57 1.84 0.001 0.0144 0.0114 3381

PID_IL12_STAT4_PATHWAY 32 0.56 1.80 0.003 0.0232 0.0184 1171
REACTOME_SIGNALING_BY_NOTCH 178 0.41 1.78 8.17E-06 0.0001 0.0001 2503
REACTOME_MAPK6_MAPK4_SIGNALING 82 0.46 1.78 0.0002 0.0025 0.0020 3275
WP_IL18_SIGNALING_PATHWAY 250 0.37 1.71 5.25E-06 0.0001 9.57E-05 1774
REACTOME_SIGNALING_BY_NOTCH4 78 0.44 1. 70 0.001 0.0104 0.0083 2607
PID_IL23_PATHWAY 35 0.52 1. 70 0.005 0.0359 0.0286 2710
WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY 24 0.56 1.69 0.007 0.0446 0.0354 1023
REACTOME_TCF_DEPENDENT_SIGNALING_IN_R
ESPONSE_TO_WNT 171 0.31 1.34 0.007 0.0463 0.0367 1844

KEGG_TGF_BETA_SIGNALING_PATHWAY 81 -0.44 -1.61 0.006 0.0386 0.0306 2576
REACTOME_DISEASES_OF_GLYCOSYLATION 109 -0.43 -1.64 0.0007 0.0071 0.0057 1554
WP_REGULATION_OF_WNT_BCATENIN_SIGNALI
NG_BY_SMALL_MOLECULE_COMPOUNDS 16 -0.68 -1.81 0.008 0.0478 0.0379 2704

GSEA, Gene Set Enrichment Analysis

3.8 Differential Expression Validation and
Diagnostic ValueAnalysis of Hub Genes
(A) Differential expression analysis of hub genes
between glaucoma and control samples.
Pink-purple indicates control samples,
orange-red indicates glaucoma samples.
Statistical significance: ns (p ≥ 0.05), * (p <
0.05), ** (p < 0.01), *** (p < 0.001). (B-D)
ROC curve analysis for hub genes: SEC23A,
BET1, and ARCN1 (B); COPB2, VCP, and
UBC (C); SEC61B (D). AUC values between
0.7-0.9 indicate moderate diagnostic accuracy,
while values between 0.5-0.7 suggest limited
diagnostic potential. ROC: Receiver Operating
Characteristic; AUC: Area Under the Curve;
TPR: True Positive Rate; FPR: False Positive
Rate.
To verify the transcriptional profiles of the hub
genes, we performed a comparative assessment
between glaucoma and healthy control
specimens using the consolidated dataset
combining GSE2378 and GSE9944. Our
differential expression evaluation (Figure 8A)
revealed heterogeneous significance patterns
across the core gene set. Three transcripts,
ARCN1, VCP, and UBC, demonstrated profound
expression disparities (p < 0.001), whereas three
additional genes, SEC23A, COPB2, and SEC61B,
showed considerable transcriptional differences
(p < 0.01) between patients with glaucoma and

healthy controls.
We assessed the diagnostic capabilities of these
hub genes using ROC curve analysis using the
“pROC” package. The results (Figure 8B–D)
indicated that six hub genes—SEC23A, ARCN1,
COPB2, VCP, UBC, and
SEC61B—demonstrated a moderate level of
diagnostic accuracy, as evidenced by the AUC
values ranging from 0.7 to 0.9. In contrast, BET1
showed limited diagnostic utility, with AUC
values between 0.5 and 0.7.

3.9 Immune Cell Infiltration Analysis in
Glaucoma
(A) Differential abundance of immune cell
populations between glaucoma and control
samples. Pink-purple indicates control samples,
orange-red indicates glaucoma samples. (B)
Correlation heatmap showing relationships
between significantly altered immune cell
populations. (C) Bubble plot depicting
correlations between hub genes and immune cell
infiltration levels. Orange indicates positive
correlation, blue indicates negative correlation,
with color intensity reflecting correlation
strength. Statistical significance: ns (p ≥ 0.05), *
(p < 0.05), ** (p < 0.01), *** (p < 0.001).
Correlation strength interpretation: |r| < 0.3
(negligible), 0.3-0.5 (weak), 0.5-0.8
(moderate), >0.8 (strong). ssGSEA:
single-sample Gene Set Enrichment Analysis.
Through ssGSEA methodology, we evaluated
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immune subset distributions across 28 distinct
cell types within the consolidated dataset.
Comparative analysis identified significant
differences (p < 0.05) in eight specific immune
populations between diseased and control
specimens (Figure 9A). These altered cellular

subsets encompassed activated CD4+ T cells,
dendritic cell populations, CD56+ bright NK
cells, myeloid suppressors, monocytic cells,
neutrophilic infiltrates, Th1 populations, and
Th17 subsets.

Figure 8. Expression Validation and Diagnostic Potential of Hub Genes.

Figure 9. Analysis of Immune Cell Infiltration Patterns in Glaucoma.
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We subsequently performed a correlation
assessment across the eight immune cell subsets
that exhibited remarkable alterations (Figure 9B).
Our findings demonstrated the most robust
positive association between monocytes and
activated dendritic cells (r = 0.49), whereas the
strongest inverse relationship was observed
between neutrophils and activated CD4+ T cells
(r = –0.59).
Additionally, we explored the relationships
between the seven key genes and the patterns of
immune cell infiltration, which revealed
significant correlations (Figure 9C). Importantly,
activated CD4 T cells positively correlated with
all seven key genes, suggesting that these genes
may contribute toward glaucoma pathogenesis
by affecting the function of CD4+ T cells and
modulating immune responses.

4. Discussion
Recently, glaucoma has emerged as a leading
cause of irreversible blindness, primarily due to
the degeneration of RGCs. This condition
involves complex pathological mechanisms,
particularly astrocyte dysfunction, which is vital
for maintaining retinal health. To our knowledge,
this represents the first systematic investigation
of glycosylation machinery in human glaucoma
astrocytes. Our study aimed to explore the roles
of glycosylation-related DEGs in glaucoma. We
identified 42 glycosylation-related DEGs,
including seven key hub genes: SEC23A, BET1,
ARCN1, COPB2, VCP, UBC, and SEC61B.
These genes are crucial for protein trafficking
and the regulation of secretory pathways.
Functional enrichment analyses revealed
significant involvement in glycoprotein
metabolic processes and inflammatory pathways,
with GSEA underscoring the important roles of
Wnt/β-catenin signaling and IL-23 pathways.
Additionally, our findings showed that six of the
central genes had strong potential for diagnostic
use. Our analysis suggests a potential association
between astrocyte glycosylation dysfunction and
immune responses in glaucoma. The positive
correlations between all hub genes and activated
CD4+ T cell infiltration patterns indicate that
glycosylation-related processes may participate
in immune microenvironment alterations during
disease progression.
Valosin-containing protein (VCP)/p97 is a
crucial AAA+ ATPase that serves critical
functions in protein quality control, ER stress
resolution, and ubiquitin-dependent degradation

of misfolded proteins[29-30]. These mechanisms
are essential for neuronal maintenance,
particularly given neurons' limited regenerative
capacity. In conditions like amyotrophic lateral
sclerosis and Alzheimer's disease, VCP
dysfunction impairs the removal of toxic
aggregates including tau and TDP-43,
exacerbating cellular toxicity and inflammatory
responses [31]. In glaucoma pathology, where
elevated intraocular pressure, ischemic
conditions, and aging converge, VCP function
may become compromised [32]. This
dysfunction can result in the buildup of
detrimental proteins like crystallin and
amyloid-β, alongside enhanced ER stress.
Furthermore, compromised VCP activity may
disrupt microglia-astrocyte communication,
amplifying neuroinflammatory cascades that
promote RGC degeneration.
The ubiquitin-conjugating enzyme (UBC) plays
a critical role in the ubiquitin-proteasome
pathway, which is essential for the degradation
and regulation of intracellular proteins (Pickart,
2001). This enzyme tags target proteins with
ubiquitin, signaling them for degradation by the
proteasome, thereby helping maintain protein
balance within the cell[33]. UBC is widely
distributed across diverse tissue types within the
organism, with a particularly important function
in the retina, wherein it helps preserve the
integrity of retinal cells[34]. Alzheimer's and
Parkinson's diseases involve progressive
accumulation of misfolded proteins like
amyloid-beta and alpha-synuclein, leading to
neuronal damage and cell death[35] . UBC is
vital for maintaining protein equilibrium and
regulating inflammatory responses in retinal
cells.UBC's function in degrading misfolded
proteins and managing cellular stress responses
indicates its potential importance in glaucoma
pathogenesis.
SEC23A functions as an essential element within
the COPII transport system, facilitating protein
movement between ER and Golgi compartments,
critical for neuronal integrity[36]. During
glaucoma pathogenesis, SEC23A impairment
may compromise neuroprotective chaperone
trafficking such as heat shock protein 70 and
transmembrane receptors. This potential
disruption could cause misfolded proteins, like
crystallins, to accumulate in the ER, which in
turn triggers a specific apoptotic pathway
involving protein kinase R-like ER kinase,
eukaryotic translation initiation factor 2-alpha,
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and activating transcription factor 4 in RGCs.
Additionally, the possible impaired secretion of
cytokines dependent on COPII worsens the
polarization of microglia towards the M1
phenotype and intensifies neuroinflammatory
processes. Current research has demonstrated
that SEC23A deficiency results in impaired
autophagosome-lysosome fusion, allowing
harmful aggregates similar to α-synuclein to
persist [37]. These potential combined issues of
proteotoxicity and inflammation highlight
SEC23A as a critical factor in the
neurodegeneration seen in glaucoma, suggesting
that it could be a target for new therapies, such
as ER stress modulators such as 4-phenylbutyric
acid, or gene therapies aimed at the COPII
pathway.
Our ssGSEA analysis revealed alterations in
immune-related gene expression signatures
within glaucoma astrocyte samples, which were
derived from purified optic nerve head
astrocytes and represent indirect inference based
on immune-associated gene set enrichment. The
analysis showed enrichment of gene signatures
typically associated with activated CD4+ T cells,
dendritic cells, and neutrophils, reflecting the
molecular responsiveness of astrocytes to
immune signals and inflammatory states in the
glaucomatous environment. We observed a
robust positive association between monocyte
and activated dendritic cell gene signatures (r =
0.49), and all seven hub genes were positively
correlated with activated CD4+ T cell-associated
gene signatures. These findings suggest that
immune responses may disrupt astrocyte
glycosylation processes during glaucoma
progression. Inflammatory signals could
potentially interfere with normal protein
processing in astrocytes, compromising their
neuroprotective functions and contributing to
RGC degeneration. [38-40]. While our results
primarily reflect the immune-responsive
molecular capacity of astrocytes rather than the
actual abundance or spatial distribution of
immune cells within tissues, they support the
growing evidence that immune dysregulation
contributes to glaucomatous neurodegeneration.
Future validation through immunohistochemistry,
flow cytometry, and functional experiments will
be essential to comprehensively elucidate the
multilevel mechanisms of glaucoma-related
immune regulation.
Our study has several limitations. First, we
analyzed microarray data from cultured

astrocytes obtained from post-mortem tissues,
which may not fully reflect the in vivo cellular
state. Second, the bulk RNA sequencing
approach cannot distinguish gene expression
changes in different astrocyte subpopulations.
Third, focusing specifically on
glycosylation-related genes may have excluded
other important pathways involved in glaucoma
pathogenesis. Fourth, our findings are based on
computational analysis and require experimental
validation in independent patient cohorts. Finally,
the mechanistic relationships between identified
glycosylation genes and immune cell infiltration
need further investigation through functional
studies.
In summary, our study identified critical
glycosylation-related genes dysregulated in
glaucoma astrocytes. Our findings suggest that
astrocyte glycosylation dysfunction may
contribute to RGC degeneration in glaucoma
pathogenesis, while this glycosylation
impairment appears to be associated with
immune dysregulation. These results indicate
that glycosylation defects and immune responses
may be interconnected processes that together
contribute to glaucoma progression. The
identified hub genes provide potential
therapeutic targets for interventions aimed at
restoring both protein processing and immune
balance in glaucoma treatment.
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