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Abstract: Human exposure to
micro-nanoplastics (MNPs) and persistent
organic pollutants (POPs) occurs
concurrently via ingestion, inhalation, and
dermal contact. Once inside the body, MNPs
may act as carriers for POPs due to their
adsorption capacity, potentially enhancing
the bioavailability and tissue distribution of
these toxic compounds through a "Trojan
horse" effect. This interaction can lead to
combined toxicological effects—such as
inflammatory responses, cellular dysfunction,
and metabolic disturbances—that threaten
human health. This review critically assesses
the combined health impacts of MNP–POP
co-exposure, evaluates advanced
methodological approaches including in vitro
organoid models and multi-omics integration,
and identifies key research priorities such as
intracellular transport mechanisms and the
development of human-relevant risk
assessment frameworks. Our goal is to
provide a scientific basis for improved health
risk assessment and preventive health
strategies related to mixed pollutant
exposure.

Keywords: Micro-Nanoplastics; Persistent
Organic Pollutants; Combined Toxicity;
Health Risk; Toxic Mechanisms

1. Introduction

1.1 Definition and Sources of
Micro-Nanoplastics
In 2004, scholars such as Thompson first
proposed the concept of "Microplastics", MPs
[1]. In 2008, the U.S. National Oceanic and
Atmospheric Administration clearly defined
microplastics as plastic particles or fragments
with a diameter of less than 5 mm [2], with those
smaller than 1000 nm classified as Nanoplastics,

NPs [3]. This study collectively refers to both as
Micro-nano Plastics, MNPs.
The massive production and improper disposal
of plastic products have led to severe
environmental pollution. Over the past 50 years,
global cumulative plastic production has reached
9.2 billion metric tons [4], with approximately
79% of single-use plastics being difficult to
recycle and ultimately becoming waste [5].
Plastics are resistant to degradation in natural
environments and can gradually fragment
through physical (e.g., erosion, abrasion),
chemical (e.g., UV photolysis), and biological
(e.g., microbial biofilm attachment) processes,
forming MNPs. These MNPs are widely
distributed in water bodies, soil, and the
atmosphere, posing potential threats to
ecosystems and human health [6,7].
Based on their sources, MNPs can be classified
into primary and secondary types. Primary
microplastics originate directly from human
activities and products, including textile fibers
[8], cosmetic microbeads [9], personal care
product exfoliating particles [10], medical
devices [11], and industrial raw materials [12].
Secondary microplastics are formed when larger
plastic items break down in the environment due
to UV exposure, mechanical action, etc. [13,14].
Common plastic types in the environment
include Polystyrene (PS), Polyamide (PA),
Polyethylene (PE), Polyethylene terephthalate
(PET), Polypropylene (PP), Polyvinyl chloride
(PVC), and Polycarbonate (PC). The surface
chemical properties of these materials (e.g.,
oxygen-containing functional groups) directly
influence their interaction behaviors with
coexisting chemicals in the environment [15].

1.2 Definition and Classification of Persistent
Organic Pollutants
Persistent Organic Pollutants (POPs) are organic
compounds characterized by their persistence,
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high toxicity, bioaccumulation potential, and
long-range transport capacity [16]. Due to their
stable chemical structures and resistance to
degradation, POPs are widely dispersed through
the atmosphere and water bodies, persisting in
ecosystems over extended periods while
exhibiting biomagnification and accumulation
effects [17]. These properties pose severe threats
to ecosystems and have become a global
environmental concern [18].
POPs are generated through natural processes
(such as volcanic eruptions and forest fires) and
human activities, with industrial production
being the primary source [19]. For example,
pesticides like dichlorodiphenyltrichloroethane
(DDTs) and industrial materials such as
polychlorinated biphenyls (PCBs) enter the
environment during use and discharge [20],
spreading globally through wastewater, runoff,
and atmospheric transport to various media,
where they can even be detected in polar regions
[21,22]. POPs can trigger immunotoxicity,
neurotoxicity, carcinogenicity, and endocrine
disruption in organisms [23]. The number of
regulated POPs continues to grow [24],
primarily including organochlorine pesticides
such as DDTs and hexachlorocyclohexane
(HCH); industrial chemicals like PCBs,
perfluorooctane sulfonate (PFOS), and per- and
polyfluoroalkyl substances (PFAS); as well as
industrial byproducts such as polychlorinated
dibenzo-p-dioxins (PCDDs), furans, and
polycyclic aromatic hydrocarbons (PAHs). This
article will subsequently focus on several
high-concern POPs.

1.3 The Concept of Combined Toxic Effects
and Its Relevance to Human Health
Combined toxic effects occur when multiple
pollutants are present simultaneously within a
biological system, interacting in ways that cause
the overall health impact to deviate from the
simple sum of their individual effects [25].
These interactions are generally categorized as
additive, synergistic, or antagonistic [26,27].
While the health risks of single pollutants are
relatively well-studied, their behavior can
change significantly when combined inside the
body [28]. Co-exposure may alter the absorption,
distribution, metabolism, and excretion of these
substances, thereby modulating their toxicity
[29]. Therefore, understanding combined
toxicity is essential for accurate health risk
assessment.

Combined toxicity effects can manifest in
several types, including additive effects,
synergistic effects, antagonistic effects, and
independent effects [30]. The expression of
combined toxicity effects is regulated by
multiple factors, including environmental
parameters and the types of coexisting pollutants
[31]. Micro- and nanoplastics (MNPs) can act as
carriers for other pollutants, such as persistent
organic pollutants (POPs), due to their high
adsorption capacity. Through a "Trojan horse"
mechanism, MNPs may enhance the
bioaccumulation and tissue distribution of POPs
in the human body, potentially increasing
toxicity. However, under certain conditions,
MNPs might also reduce the bioavailability of
other contaminants, leading to antagonistic
effects [32]. Given the widespread human
exposure to both MNPs and POPs—substances
known for their environmental persistence and
potential health hazards [33]. There is an urgent
need to clarify their combined health impacts.
Systematic research in this area is critical to
support evidence-based public health guidelines
and preventive strategies.

2. Human Exposure Pathways and Health
Implications of Micro-Nanoplastics

2.1 Human Exposure Pathways to
Micro-Nanoplastics
Organisms are primarily exposed to MNPs
through three pathways: ingestion, inhalation,
and dermal contact.
2.1.1 Ingestion
Gastrointestinal intake is recognized as the
primary route of human exposure to MNPs.
Contaminated aquatic products are a significant
source, with MNPs detected in hundreds of
aquatic species, confirming their transfer and
accumulation through the food chain [34].
Additionally, atmospheric deposition can
contaminate the surfaces of crops and other food
products with MNPs, which are then ingested by
humans [35]. MNPs have been detected in
various daily consumer goods and beverages
[36,37]. Human studies provide direct evidence:
the concentration of PET in infant feces is
significantly higher than in adults, and MNPs
have even been detected in meconium [38],
placenta, and breast milk [39], demonstrating
that MNPs can be exposed early in life through
maternal-infant pathways.
2.1.2 Inhalation
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MNPs are widespread in the atmospheric
environment. Inhaled MNPs can reach the lower
respiratory tract and cause respiratory irritation,
with studies having detected MNPs in human
lung tissues [40]. MNP exposure is associated
with respiratory diseases, including symptoms of
airway and interstitial lung diseases [41]. Data
show that individuals can inhale 13-26 MNPs
daily from indoor and outdoor air [42].
2.1.3 Dermal contact
MNPs are widely present in personal care
products and cosmetics, increasing the
likelihood of skin exposure during use. Existing
evidence indicates that NPs can penetrate the
skin barrier [43]and induce oxidative stress in
epithelial cells [44], suggesting that skin contact
is a potential pathway for MNPs to enter the
human body.

2.2 Toxic Effects of Micro-Nanoplastics
In vivo and in vitro studies have confirmed that
the accumulation of MNPs in organisms can
lead to various health damages, including
physical injuries and toxicity at the cellular and
molecular levels [45,46]. MNPs can be
transported to multiple systems via the
circulatory system, causing corresponding
functional impairments. The severity of their
toxic effects depends on the dose, particle size,
and chemical properties of MNPs [47].
2.2.1 Digestive system
The gastrointestinal tract is the primary site of
exposure and a toxicological target organ for
MNPs following oral ingestion. Although most
MNPs are excreted in feces, residual portions
accumulate in the digestive tract, causing
damage such as gastrointestinal obstruction and
digestive dysfunction [48]. Studies have
confirmed that MNPs can exacerbate cellular
inflammatory responses, significantly impair
intestinal function, reduce intestinal mucus
secretion, cause gut microbiota dysbiosis, and
disrupt intestinal barrier function and metabolic
homeostasis [49,50]. MNP exposure also
interferes with liver function, indicating
oxidative stress and disruptions in energy/lipid
metabolism [51]. Notably, MNPs have a high
potential to penetrate intestinal epithelial cells
and translocate across barriers, entering systemic
circulation and leading to systemic exposure in
organisms and damage to other organ systems
[52].
2.2.2 Immune system
MNP exposure can lead to immune dysfunction,

manifested as immune cell death, abnormal
expression of surface receptors, and
dysregulated cytokine secretion [53]. After
phagocytes ingest MNPs, immune-stimulatory
or immunosuppressive responses are triggered,
mediating inflammation, autoimmune disorders,
increased susceptibility to host infection, and
elevated carcinogenic risk. The immune system
recognizes MNPs as foreign substances,
initiating multi-level immune responses that
ultimately result in host toxicity. Among these,
the activation of immune cells associated with
inflammatory responses is one of the primary
effects of MNP exposure [54]. In vitro studies
have confirmed that PP particles can stimulate
immune cells, induce elevated cytokine levels,
and enhance potential hypersensitivity reactions
[55].
2.2.3 Respiratory system
The lung, as a major target organ for MNPs
exposure, has its gas exchange function
particularly vulnerable to toxic damage.
Occupational exposure evidence indicates that
industrial workers in synthetic textile
manufacturing, due to long-term exposure to
high concentrations of MNPs, face a
significantly elevated risk of developing
respiratory symptoms associated with airway
and interstitial lung diseases. Cellular-level
studies reveal that MNPs can inhibit the viability
of human lung epithelial cells, induce cell cycle
arrest, activate inflammatory gene transcription,
and alter the expression of cell cycle and
pro-apoptotic related proteins [56].
2.2.4 Reproductive system
MNPs can disrupt testicular structure through
various mechanisms including oxidative stress
[57], immune response [58], mitophagy [59],
and apoptosis [60], directly affecting
testosterone synthesis, compromising
blood-testis barrier integrity, and impairing
spermatogenesis. Research confirms that MNP
exposure damages spermatogenic cell structure,
leading to seminiferous tubule atrophy and germ
cell loss [61]. The harm of MNPs to female
reproductive health is equally significant,
potentially inducing ovarian inflammation,
oxidative stress-induced ovarian atrophy [62],
and disrupting placental immune homeostasis,
with markedly adverse effects on offspring
health [63].
2.2.5 Nervous system
Studies have confirmed that MNPs can induce
neurotoxicity in organisms. MNPs can enter the
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central nervous system through the respiratory or
circulatory systems [64], and subsequently reach
the brain via pathways such as the olfactory or
trigeminal nerves [65]. Long-term MNP
exposure can induce significant neurotoxic
effects in mice, including blood-brain barrier
dysfunction, hippocampal inflammation, and
cognitive deficits [66]. There is controversy
regarding the neurotoxic effects of short-term
MNP exposure [67], and their migration to the
central nervous system as well as their direct
neurotoxicity still require further clarification.

3. Human Exposure Pathways and Health
Implications of Persistent Organic Pollutants

3.1 Exposure Pathways of POPs
Humans are primarily exposed to POPs through
dietary intake, drinking water consumption, and
environmental contact [68]. This multi-pathway
exposure pattern makes the accumulation of
POPs in the human body a complex public
health issue.
3.1.1 Dietary intake
Dietary intake is the main route of human
exposure to POPs, accounting for over 90% of
total exposure [69]. Animal-derived foods,
particularly fatty fish, meat, and dairy products,
generally contain higher concentrations of POPs
[70]. Among plant-based foods, certain
vegetables and fruits may also test positive for
POPs, mainly due to soil absorption or
atmospheric deposition [71].
3.1.2 Drinking water consumption
Drinking water intake is generally not a primary
route of POPs exposure, but it can become a
significant source in areas with severe localized
pollution. For instance, in regions with industrial
contamination or intensive agricultural activities,
groundwater can be polluted by POPs [72]. In
recent years, newly identified POPs frequently
detected in drinking water, such as PFAS
[73]and 1,4-dioxane [74], have also emerged as
major concerns.
3.1.3 Occupational exposure
Occupational exposure is another important
pathway for POPs contact. Workers in specific
industries face higher risks of POPs exposure.
For example, the concentration of brominated
flame retardants in the blood of e-waste
dismantling workers is significantly higher than
in the general population [75], and 1,4-dioxane
has also been identified by the U.S.
Environmental Protection Agency as posing an

unreasonable risk to workers in certain
occupational settings [76].
3.1.4 Breastfeeding
Breastfeeding is a unique route of infant
exposure to POPs. The detection of POPs in
breast milk not only reflects the maternal
accumulation levels but also poses potential
impacts on infant health. Although
concentrations of traditional POPs in breast milk
have shown a declining trend in some countries,
the detection rates of emerging POPs remain
high [77].

3.2 Toxic Effects of Persistent Pollutants
The impact of POPs on human health is
long-term and complex, with their toxic effects
extensively affecting multiple physiological
systems and organs.
3.2.1 Endocrine disrupting effects
Multiple POPs are typical endocrine-disrupting
chemicals (EDCs) that can interfere with
hormone synthesis, secretion, and transport,
leading to endocrine and metabolic system
disorders and increasing the risk of specific
cancers [78]. Studies have shown that triclosan
(TCS) can significantly alter fish sex hormone
levels and related gene expression [79].
Population studies have found that
environmental PAH exposure is significantly
associated with changes in male reproductive
hormone levels [80].
3.2.2 Neurological effects
Some POPs exhibit neurodevelopmental toxicity.
PAHs can cross the blood-brain barrier, exerting
direct neurotoxic effects on the central nervous
system, potentially leading to
neurodevelopmental disorders and cognitive
impairment in children. Vulnerable populations
such as children and the elderly show higher
sensitivity to these effects [81]. Additionally,
low-dose CS can induce oxidative stress, DNA
damage, and histopathological changes in the
liver and brain of adult zebrafish [82].
3.2.3 Immunosuppression
Long-term exposure to POPs can lead to
suppression of immune system function,
increasing susceptibility to infections and the
risk of autoimmune diseases. Studies have
revealed that PAHs may contribute to the
pathogenic mechanisms of autoimmune diseases
such as rheumatoid arthritis through interactions
with the aryl hydrocarbon receptor [83].
Additionally, PAHs exposure can interfere with
the body's effective immune response to
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infections and tumors by inhibiting the activity
of immune cells [84].
3.2.4 Carcinogenicity
Several POPs have been identified as human
carcinogens (Group 1) or probable human
carcinogens (Group 2A). For example, PCDD,
as a Group 1 carcinogen, is significantly
associated with an increased risk of various
cancers [85]. Large-scale epidemiological
studies have shown a positive correlation
between dietary intake of Benzo [a]pyrene (BaP)
and the risk of breast cancer [86].
3.2.5 Metabolic disorders
Numerous studies have confirmed that POPs
exposure can interfere with lipid metabolism and
glucose homeostasis regulation, increasing the
risk of obesity, type 2 diabetes, and
cardiovascular diseases [87]. Recent research
has found that POPs can directly affect the
overall metabolic function of the gut microbiota
[88], alter its composition and function, and
thereby participate in the development and
progression of obesity or diabetes [89].
3.2.6 Reproductive and developmental toxicity
POPs can induce epigenetic changes in
reproductive tissues, affecting gene expression
regulation and cellular function; they can also
trigger inflammatory and immune responses,
further impairing reproductive capacity [90].
Studies indicate that PAH exposure can damage
oocyte DNA integrity, disrupt ovarian function,
and is associated with adverse reproductive
outcomes [90]. Semen omics analysis shows a
significant correlation between abnormal sperm
function in male infertility patients and elevated
urinary PAH concentrations [91].
The impact of POPs on human health exhibits
significant chronic cumulative characteristics,
with health damage often becoming apparent
only after years of exposure. More notably,
POPs in the environment often exist as mixtures,
and different pollutants can produce combined
exposure effects, which greatly complicates the
comprehensive assessment of their health risks.

4. Interactions Between Micro-Nanoplastics
and Persistent Organic Pollutants
The complex interactions between MNPs and
POPs are a research hotspot in environmental
science and toxicology. MNPs not only pose
environmental threats themselves but also act as
carriers, adsorbing and enriching pollutants such
as POPs, thereby exacerbating environmental
risks through combined exposure effects.

4.1 Adsorption and Desorption Mechanisms
of Micro-Nanoplastics and Persistent Organic
Pollutants
Due to their small size and large specific surface
area, MNPs exhibit strong adsorption
capabilities and can adsorb POPs through
various mechanisms such as hydrophobic
interactions, electrostatic attraction, and
hydrogen bonding [92]. The adsorption process
is influenced by environmental parameters and
the intrinsic properties of MNPs [93,94].
The strong adsorption capacity of MNPs for
hydrophobic organic pollutants mainly stems
from the inherent hydrophobicity of POPs and
the high specific surface area of MNPs [95].
Therefore, in the marine environment, POPs can
significantly accumulate on suspended
particulate matter [96]. Numerous studies have
confirmed that the adsorption capacity of MNPs
for organic pollutants is approximately 1-2
orders of magnitude higher than that in natural
sediments and soil environments [97],
highlighting their potential environmental risks
as efficient pollutant carriers.
Desorption is the process by which pollutants
are released from the surface of MNPs, driven
by environmental conditions [96]. Under
specific conditions, previously adsorbed
pollutants may desorb and re-enter the
environment, forming a secondary source of
pollution.

4.2 Influence of Micro-Nanoplastics as
Carriers on the Transport of Persistent
Organic Pollutants
MNPs can act as "Trojan horses" for POPs,
significantly promoting their transport and
diffusion in the environment. Due to their small
size, MNPs can penetrate environmental barriers
and transport adsorbed pollutants to areas that
are otherwise difficult to reach [98]. This carrier
effect not only alters the spatial distribution and
environmental behavior of pollutants but also
potentially affects their bioavailability and
ecological risks.
Moreover, MNPs can transfer through the food
chain, transporting adsorbed pollutants from
lower trophic levels to higher ones, causing
bioaccumulation and magnification effects. This
ultimately increases the exposure levels and
health risks of pollutants to higher trophic
organisms.
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4.3 Combined Toxic Effects and Mechanisms
of Micro-Nanoplastics and Persistent Organic
Pollutants
The coexistence of MNPs and POPs in the
environment leads to complex combined toxic
effects, with their interaction patterns highly
dependent on factors such as pollutant
combinations, concentration ratios, exposure
duration, and biological receptors [87]. Current
research has revealed the following key
mechanisms and effect patterns:
1). MNP carrier effects enhance the
bioavailability and toxicity of POPs: Both
laboratory studies and field investigations have
confirmed that MNPs can effectively adsorb
chemical pollutants in the environment,
exhibiting strong adsorption capacity for
hydrophobic organic pollutants [99,100].
Research provides typical evidence: low-dose
PS increases the bioaccumulation of PCBs in
benthic organisms, directly confirming that
MNPs exacerbate the bioaccumulation and
potential toxicity of POPs [101]. Combined
exposure to MNPs and POPs results in more
oxidative damage, indicating that MNPs can
increase the absorption of pollutants by acting as
an additional exposure pathway [102]. These
results suggest that MNPs play a "Trojan horse"
role, enhancing the delivery efficiency of POPs
to biological targets, which is one of the key
mechanisms underlying their synergistic
toxicity.
2). Adsorption Reduces Bioavailability and
Potential Antagonistic Effects: Conversely, the
strong adsorption of POPs by MNPs may reduce
their bioavailability in environmental media or
organisms, thereby causing antagonistic effects
[103]. This "passivation" effect typically occurs
under specific conditions and may be
counteracted by subsequent digestive desorption
processes; its environmental relevance and
persistence still require careful evaluation.
Additionally, the toxicity of adsorbed POPs
varies with the diameter of MNPs, with
smaller-diameter MNPs exhibiting more
significant biotoxicity [104].
3). Synergistic Effects of Physical Damage and
Chemical Stress: MNPs themselves can cause
physical damage and induce oxidative stress.
Physical damage can compromise the integrity
of biological barriers, providing more entry
pathways for POPs. Meanwhile, MNP-induced
oxidative stress and the chemical toxicity of
POPs can produce additive or synergistic effects,

exacerbating cellular damage, inflammatory
responses, and organ dysfunction [105]. Studies
have found that MNPs adsorbed with BaP are
more toxic than MNPs alone, with
smaller-diameter MNPs causing higher DNA
damage toxicity [106]. Combined exposure to
MNPs and BaP can result in severe colon barrier
damage and inflammation in mice, producing
synergistic toxic effects [107].
4.Interference with Pollutant Metabolism and
Detoxification Processes: Preliminary studies
indicate that MNPs may interfere with the
metabolic transformation and detoxification
pathways of POPs in organisms. For example,
MNP exposure can reduce sperm-egg collision
probability, enhancing the fertilization toxicity
of TCS [108]. MNPs can also inhibit lipid
metabolism activity in the liver, leading to
prolonged retention of TCS in the liver and
intestines, accumulation of toxic metabolites,
and consequently amplifying its toxic effects
[109].

5. Research Methods for Combined Toxicity
Effects
Since these two types of pollutants commonly
coexist in the environment, their combined
effects may lead to more complex and severe
ecological risks than individual pollutants. To
comprehensively assess their joint toxicity,
researchers have employed various methods and
technical approaches.
In vitro and in vivo experiments are the two
primary methods for studying the combined
toxicity of microplastics and POPs, each with its
own advantages and disadvantages. In vitro
experiments are simple to perform, highly
reproducible, and allow rapid screening of large
numbers of samples while enabling in-depth
investigation of toxicity mechanisms. However,
they struggle to simulate complex physiological
processes and organ interactions. In vivo
experiments better reflect the actual behavior
and effects of pollutants in organisms, including
long-term chronic effects, but are operationally
complex, time-consuming, costly, and involve
ethical concerns regarding animal use.
In recent years, researchers have increasingly
favored combining in vitro and in vivo
experiments to obtain more comprehensive
toxicity assessment results. For example,
zebrafish embryo in vivo experiments and
human liver cell in vitro experiments were
integrated to evaluate combined toxicity [110].
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Additionally, researchers have begun exploring
the integration of in vitro-in vivo coupled
methods with other advanced techniques to gain
deeper mechanistic insights. Several approaches
have been utilized, including enzymatic assays,
histological analysis, and fluorescence tracking
[111,112], which demonstrate that exposure to
POPs associated with MNPs can impact the
health of aquatic organisms.
Furthermore, innovative applications of in vivo
imaging systems (IVIS), radioisotope tracing,
and histological staining have been employed to
reveal pollutant uptake, biological effects, and
interactions, illustrating the distribution and
biological effects of typical pollutants in marine
organisms [113]. This multidimensional research
approach provides critical clues for unraveling
the mechanisms of combined pollutant effects.
It is noteworthy that some studies have used
zebrafish larvae as model organisms to evaluate
the impact of MNPs on the bioavailability of
these pollutants [114]. The results showed that
while MNPs can adsorb these pollutants, the
adsorption does not always align with
predictions based on physicochemical properties.
The research highlights the unique perspective
of biological measurement methods in assessing
the co-pollutant bioavailability of MNPs.

6. Research Challenges and Future Directions
in Health Risk Assessment
The co-exposure of micro-nanoplastics (MNPs)
and persistent organic pollutants (POPs) presents
a growing concern for public health. While the
individual toxicities of these pollutants are
increasingly recognized, their combined effects
within the human body may lead to unexpected
health risks due to potential synergistic
interactions. Recent evidence suggests that these
co-pollutants can disrupt biological systems in
complex ways, potentially altering cellular
responses and exacerbating toxicity.
Current research on the combined health effects
of MNPs and POPs remains in its infancy, with a
critical shortage of human-relevant data. This
review has synthesized existing knowledge on
their individual and joint toxicological pathways
and evaluated prevailing methodological
approaches. Moving forward, research must
prioritize elucidating the molecular mechanisms
of MNP-POP interactions within biological
systems, focusing on their co-transport, cellular
uptake, and collective fate inside human tissues.
Establishing a definitive link between

co-exposure doses and adverse health outcomes
is essential.
Furthermore, there is an urgent need to develop
advanced human organoids and multi-cellular
tissue models that can more accurately predict
human-specific toxicological responses. In
conclusion, resolving the combined health risks
posed by MNPs and POPs is a pressing public
health challenge that demands interdisciplinary
collaboration. A deeper understanding of the
intracellular behavior and synergistic toxicity of
these pollutant complexes will provide a
scientific foundation for developing effective
exposure guidelines and preventive health
measures.
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