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Abstract: Addressing the challenges of bird
control applications at civil airports—namely
the difficulty of detecting distant small targets,
strong background interference, and high
real-time requirements—this paper proposes
a YOLOv10n-attention-based recognition and
localization method for bird control cannons.
This approach utilizes YOLOv10n as its
backbone. Without altering the pyramid and
neck topology, it introduces global attention
at the high-level branches to enhance
response to weakly textured targets. The P5
branch employs a C2fCIB bottleneck
structure to stabilize semantic representation
across large receptive fields. The detection
head retains the decoupled architecture with
a DFL + IoU + CE loss combination,
performing only “bird/non-bird” binary
classification to meet engineering closed-loop
requirements. Experiments on the self-built
Airport-Birds dataset (airport surveillance
frames  with single-class  annotations)
demonstrate that our model achieves
approximately mAP@0.50=0.83 at 640x640
input resolution with real-time performance
around 30 FPS. This represents a stable
improvement over the baseline without
significantly increasing parameters or
computational cost. Ablation studies further
validate the synergistic contribution of
attention mechanisms and the P5 bottleneck

architecture to accuracy, recall, and
localization robustness. By integrating
recognition results with servo control

mapping, the system completes the
“detection-localization-lock-deterrence”
engineering loop, meeting airport scenarios'
demands for rapid response and high
reliability. This work provides a reusable,
deployable visual front-end solution for
intelligent airport bird deterrence systems,
laying the foundation for future multimodal
fusion and edge deployment.
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1. Introduction

Bird strikes pose a significant threat to global
aviation safety, persistently disrupting civil
aviation operations and airport functions [1].
According to International Civil Aviation
Organization statistics, approximately 10,000
bird strike incidents occur worldwide annually,
with over 90% occurring during takeoff,
approach, and landing phases. These incidents
cause severe damage to critical aircraft
components such as engines, wings, windshields,
radomes, and landing gear [2]. Traditional bird
deterrence methods—such as manual patrols,

bird-scaring vehicles, gas cannons,
acoustic/visual  deterrents, and  repellent
spraying—may  yield short-term  results.

However, due to birds' strong learning abilities
and high adaptability, their long-term
effectiveness often diminishes rapidly [3][4].
Furthermore, manual bird control methods
consume substantial human resources and have
limited response capabilities, making it difficult
to meet modern civil airports' demand for round-
the-clock, intelligent bird control [5]. Therefore,
there is an urgent need to explore integrated,
automated intelligent bird control systems.

In the field of bird identification and monitoring,
significant progress has been made in object
detection technology research. Traditional two-
stage methods (such as the R-CNN series)
demonstrate excellent accuracy but suffer from
high computational complexity, rendering them
unsuitable for real-time applications [6]. Single-
stage methods (such as SSD and YOLO series),
however, have emerged as a current research
hotspot for bird object identification due to their
end-to-end detection workflow and high
operational speed [7]. However, the small size,
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high flight speeds, and diverse postures of birds
in airport scenarios, coupled with complex
lighting and weather conditions, make detection
particularly challenging [8]. To enhance
recognition performance, researchers are
continuously exploring lightweight network
architectures, small object detection
augmentation, multi-scale feature fusion, and
attention mechanisms to improve algorithm
robustness in complex environments.

In recent years, improving the application of
YOLO models in bird detection has garnered
significant attention. The YOLOVS8-Birds model
proposed by Wang Qingyu et al. [9] effectively
enhanced the recognition performance of small
bird targets in Poyang Lake by introducing
deformable convolutions (C2f D3), GSConv,
and BiFPN structures, combined with Slide Loss
to optimize learning for challenging samples.
Han Tao et al [10]. proposed the SCCW-YOLO
and FCE-YOLO models based on YOLOvVS. By
utilizing coordinate attention mechanisms,
deformable convolutions, and lightweight
detection heads respectively, these models
achieved a balance between detection accuracy
and model parameter count.  These
improvements  demonstrate ~ the  strong
adaptability of YOLO models for small object
recognition and real-time detection, providing a
robust  technical  foundation for  bird
identification and tracking in airport bird control
scenarios [11].

Existing airport bird control technologies
primarily focus on the “deterrence” phase, while
the ‘identification’ phase still lacks high-
precision, real-time recognition and targeting
capabilities for small birds. Building upon
improvements to the YOLO model and
integrating requirements for bird deterrent
cannon applications, this study proposes an
intelligent closed-loop method of “identification-
localization-deterrence.” This approach aims to
provide a feasible engineering pathway for
constructing efficient and safe bird control
systems at civil airports [12].

2. YOLOv10n-Attention Model

The improved YOLOvIOn-attention object
detection model is illustrated in Figure 1.
Building upon the YOLOv1On baseline,
Coordinate Attention (CA) is introduced to
enhance the representation capability of shallow-
to-mid-level features for small-scale and weakly
textured bird targets. Simultaneously, C2fCIB is
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adopted as the structural bottleneck for high-
level semantic reconstruction in the PS5 branch,
stabilizing the advanced semantic expression of
distant targets. Beyond these two modifications,
the pyramid levels (P3/P4/P5), neck fusion
(FPN/PAN), and detection head/loss (decoupled
head, DFL + IoU + CE) remain consistent with
the baseline. This ensures performance
differences can be attributed to the attention
mechanism and the P5 structural bottleneck.

{ Head
| Backbons Neck H

Model Architecture Diagram

2.1 Backbone Network
While ensuring real-time processing, extract
hierarchical features from low to high levels:
shallow layers preserve edge/texture details,
intermediate layers combine geometric and
semantic information, and high-level layers
enhance global semantic understanding and
structural stability. This approach provides
robust features for the P3/P4/P5 detection scales.
2.1.1 Staged structure and tensor scale
Taking an input size of 416x416 as an example,
the stem network can be divided into five stages
from bottom to top: Stem and S1-S5. Each stage
performs spatial downsampling with a stride of
=2, progressively enlarging the receptive field
and compressing the resolution. Specifically:
The image first undergoes initial feature
extraction in Stem via a 3x3 convolution (stride
2), reducing resolution from 416 to 208; It then
enters S1, where local edges and texture
information are further encoded using C2f
bottlenecks as the basic unit, followed by
another 2-stride downsampling to 104. The S2
stage continues the C2f stacking, preserving
strong details while introducing richer context,
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resulting in a feature map size of 52x52. This
scale corresponds to the P3 branch of the
subsequent detection head, which is most
sensitive to distant small objects. Next, the
process enters S3, where the resolution changes
to 26x26. The features contain sufficient
boundary information and strong inter-class
separation, corresponding to the P4 branch in
detection. S4 further reduces resolution to 13x13,
yielding the most refined semantic features and
serving as the primary source for P5. Above this,
S5 aggregates multi-scale context via SPPF and
overlays high-level attention (PSA/AFGC) for
channel-spatial re-calibration, ultimately
producing high-level semantic features. In
summary, the backbone outputs three feature
streams to the neck: 52x52 (P3) from S2, 26x26
(P4) from S3, and 13x13 (P5) from S4/S5. These
three streams jointly enter the FPN/PAN for
bidirectional fusion before being fed to the
decoupled detection head for classification and
regression.
2.1.2 C2f and C2{CIB backbone unit
C2f (Cross-Stage partial with lighter bottlenecks)
achieves this by proportionally splitting the input
channels: one branch traverses multiple
bottlenecks (Bottleneck: Conv-BN - SiLU
residual), while the other branch takes a shortcut
for direct connection. Finally, the channels are
concatenated in the channel dimension and
rectified. Its advantages include smooth gradient
flow, high feature reuse, and computational
efficiency [13]. Let the input tensor be X, split
into X, and X, . After passing through m
bottlenecks, they are aggregated with the direct-
connection stream:
Y=¢(Concat|X, B, (X )]) (1)
Among them, ¢ is a combination of 1x1/3x3
convolutional rectification.
C2fCIB (for structural bottlenecks in P5)
replaces standard C2f with C2fCIB at the top
layer (13x13). This feature enables stronger
semantic reconstruction and channel interaction
under large receptive fields, suppressing large-
scale structural noise such as runway reflections
and aircraft glare. Consequently, the contours
and category semantics of distant/medium-to-
large targets become more stable [14]. This unit
is placed in the P5 branch without altering the
pyramidal hierarchy or downstream pathways,
solely enhancing high-level representations.
2.1.3 Attention mechanism and placement
position
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The main attention mechanism is employed to
enhance response in the avian region and
suppress  complex  backgrounds  without
modifying the pyramid/neck/detection head. The
current implementation utilizes high-level global
context attention (positioned after SPPF) and can
be regarded as equivalent to coordinate attention
at shallow-to-mid layers within the same
“spatially aware channel relabeling” paradigm.
Global context attention enhances sensitivity to
high-level semantic features—such as overall
bird shape, orientation, and texture statistics—by
re-calibrating features through a channel-space
joint approach after SPPF aggregation. Its
general form can be expressed as:

F=0(3(F))OF )
where § denotes the global context encoding
(which may incorporate multi-head/frequency
domain/pyramid pooling), and © represents
element-wise multiplication.

Regarding the mechanism of Coordinate
Attention (CA), this paper presents its analytical
expression (belonging to the “spatially aware
channel attention” family alongside PSA/AFGC):
Perform one-dimensional global aggregation
along both the height (H) and width (W)

dimensions of the input XeR“*# "
N s
a (o= LXCi) ()
N iy
Zyw (CQ])ZFI llil X(CalJ) (4)

After concatenation, pass through a lightweight
MLP and decompose into two weight maps sy,
and s,,. This ultimately yields weight maps that
simultaneously encode channel importance and
directional positional information, completing
the re-calibration.

2.1.4 Activation, normalization, and numerical
stability

The main trunk layers default to a combination
of SiLU  activation and  BatchNorm
normalization: ~ SiLU  provides  smoother
gradients and more stable convergence under
small-sample and strong data augmentation
conditions [15], while BatchNorm performs
channel-level normalization during training and
is folded into convolutional weights during
inference,  thereby  avoiding  additional
computational overhead [16]. The
residual/shunt-based C2f and C2fCIB units
effectively mitigate gradient vanishing and
feature degradation during deep network training
under this activation-normalization architecture,
ensuring consistent numerical scales when
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aggregating shallow textures and high-level
semantics across layers. The SPPF at the trunk
end compressively fuses local and global
contexts through multi-receptive field parallel
pooling, providing a stable statistical
background for subsequent high-level attention
(PSA/AFGC). This allows attention recalibration
to better capture global cues of “overall bird
shape and orientation” rather than amplifying
local noise; This directly enhances feature
discrimination and numerical robustness in

airport scenarios characterized by strong
reflections, thermal disturbances, and
backlighting.

2.1.5 Interfaces and export for P3/P4/P5

The backbone outputs three feature streams to
the neck, corresponding to the P3, P4, and PS5
scales of the detection head: The 26x26 features
from S3 strike a balance between boundary
details and category semantics, making them
suitable for medium-scale targets; while the
13x13 features derived from S4/S5 offer the
most refined semantic information. Enhanced by
SPPF and high-level attention mechanisms, they
strengthen overall shape recognition and
category discrimination capabilities, primarily
serving close-range or relatively larger targets.
Upon entering the FPN/PAN, the three feature
streams undergo bidirectional alignment and
fusion along predefined top-down and bottom-up
paths before seamlessly connecting to the
classification and regression branches of the
decoupled detection heads. This interface design
aligns with the YOLOv10n baseline, ensuring
reusability across training and deployment
pipelines while providing clear, stable tensor

boundaries for multi-scale  collaborative
detection.
2.2 Neck Network

The neck network receives three feature outputs
from the backbone (P3: 52x52, P4: 26x26, P5:
13x13), achieving bidirectional semantic and
detail propagation through top-down and
bottom-up pathways. The top-down path first
upsamples the higher-level, semantically richer
PS5 features to match P4's spatial resolution, then
concatenates them with P4 along the channel
dimension. After rectification through a
convolutional/residual unit, this yields mid-level
features balancing semantic information and
edge boundaries. The same process further
upsamples these intermediate features to the
scale of P3, merges them with shallow-level
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details, and rectifies the result to produce high-
resolution features with enhanced detail while
preserving category cues. Subsequently, the
bottom-up path downsamples the fused P3
features back to P4 at a stride of 2. These
features are then aggregated and rectified with
P4's same-scale features in the channel
dimension. This enables P4 to simultaneously
incorporate edge/texture clues from shallow
layers and category/structural information from
higher layers. Similarly, the processed P4 is
further downsampled and fed back to PS5, where
it is fused and rectified with the highest-level
semantic features. This forms a more stable
detection input for large-scale objects.
Ultimately, the neck outputs three sets of tensors
to the detection head, maintaining spatial
dimensions of 52x52, 26x26, and 13x13
respectively, with channel counts aligned to
baseline settings. These tensors complement
each other spatially and align in channel
representation, providing robust, consistent input
for subsequent decoupled detection heads. The
entire fusion topology adheres to the standard
FPN/PAN  paradigm.  Upsampling  and
downsampling employ conventional
interpolation and strided convolution, while
channel dimension aggregation is achieved
through  concatenation and convolutional
rectification. Implementation and inference
maintain identical structure and sequence to the
baseline, facilitating engineering deployment
and experimental reproducibility.

2.3 Detection Head and Loss

The detector employs a decoupled architecture
for each scale feature, placing classification and
regression tasks into two parallel convolutional
branches to minimize task interference [17]. For
any input feature map at any scale, the
classification branch  generates category
confidence scores for each grid location through
multiple layers of convolutions and activations
(configurable as “bird/non-bird” or multi-class
birds in airport scenarios). The output undergoes
Sigmoid normalization, with each shape
corresponding one-to-one to the spatial grid. The
regression branch employs distributed boundary
regression at its core, predicting discrete
probability distributions for the four distances
(left, top, right, bottom) of the target boundary
relative to the grid center. The expected value of
these distributions is used to recover continuous
boundary distances. Combined with anchor-free
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geometric mapping, this yields candidate
bounding boxes in the image coordinate system.
The advantage of decoupling lies in allowing the
classification path to focus more intently on
class separability and confidence stability, while
the regression path concentrates on geometric
consistency and boundary smoothness. Both
paths share inputs at the same scale during
forward propagation but optimize independently
during backpropagation, maintaining only a
weak coupling through positive-negative sample
allocation and weighted summation of losses
[18]. The training phase retains the baseline
matching and loss combination: classification
uses  cross-entropy (or its  equivalent
implementation) to measure the network's
discrimination quality for birds; Regression
employs a series of loU losses to characterize
the overlap and geometric relationship between
predicted and ground-truth bounding boxes.
Distribution Focus Loss (DFL) constrains the
discrete distribution of four boundary distances
to align with ground-truth distances, enabling
continuous, smooth boundary regression at the
pixel level.

During the inference stage, candidates are first
filtered at each scale based on classification
confidence thresholds. The expected solution
from distribution regression is then decoded into
bounding box coordinates. Non-maximum
suppression is applied to multi-scale candidates
to yield the final detection results. Specifically,
P3 prioritizes recall of distant small objects,
while P4 and P5 provide stable supplementary
detection at medium and large scales
respectively, ensuring the overall detection
system maintains a favorable balance between
speed and accuracy.

The positive and negative sample allocation
during training follows task alignment and IoU-
guided principles consistent with the baseline:
the model generates candidates on grids at each
scale, selecting the positive sample set based on
geometric relationships between predictions and
ground truth and center position constraints. This
ensures that the grid truly bearing the
supervision signal is concentrated within the
target coverage area and its neighborhood. The
loss function is weighted and summed at the
branch level, with its overall form expressed as a
combination of classification loss, IoU
regression loss, and distribution focus loss. The
classification term uses cross-entropy to measure
the accuracy of category discrimination,
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emphasizing high-confidence identification of
bird targets. The regression term uses loU-based
losses to constrain consistency between
candidate and ground-truth bounding boxes in
overlap area, center distance, and aspect ratio,

ensuring robust boundary geometry. The
distribution term supervises the discrete
probability distribution of four boundary

distances, minimizing deviation from ground-
truth distances in the distribution space to
achieve smoother, differentiable regression at
the pixel scale. This synergistic matching and
loss mechanism enables classification and
regression to complement each other: the former
provides reliable candidate filtering and
confidence ranking, while the latter ensures
boundary continuity and interpretability. When
integrated with multi-scale FPN/PAN outputs,
the network reliably recalls small targets and
delineates large ones amid complex airport
backgrounds, backlighting, and thermal noise—
all without altering inference paths or tensor
interfaces for seamless deployment in real-world
systems.

3. Experimental Results and Analysis

3.1 Experimental Setup
The experimental environment configuration is
shown in Table 1. The training parameters are
set as follows: input resolution is fixed at
640%640, training is conducted for 300 epochs,
and the batch size is set to 32. The optimizer
uses SGD, and AMP mixed precision is not
enabled during training. For data loading,
parallel reading with workers=8 was enabled to
enhance /O  throughput. Mosaic data
augmentation remained enabled by default
(close_mosaic=0), while dataset caching to disk
was disabled (cache=False). The rest of the
training workflow followed the default
implementation of Ultralytics YOLOv10. The
inference stage adopts the same image scaling
and post-processing hyperparameters as training
(using the framework's default settings for
confidence threshold and NMS threshold). To
meet the real-time requirements for bird-
repelling cannon coordination, Test-Time
Augmentation (TTA) is not additionally enabled.
Table 1. Experimental Environment Details

Configuration Name | Configuration Parameters

Operating System Windows 11

CUDA/Driver CUDA 12.8

Deep learning framework|PyTorch 2.11.0, Python 3.9
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| GPU | NVIDIA RTX4060 |

3.2 Model Evaluation Metrics
Comprehensively evaluate the effectiveness and
deployability of the detection algorithm in the
airport bird scenario, using precision (denoted as
P), recall (denoted as R), average precision (AP),
mAP@0.50 under the IoU=0.50 threshold, as
well as detection speed (FPS) and model size
(Params, weight magnitude) as comprehensive
evaluation indicators. Precision characterizes
“the proportion of samples correctly classified as
birds among those labeled as birds by the model,
while Recall reflects “the proportion of all true
bird samples in the test set that are correctly
detected.” Taking binary classification detection
as an example: TP (True Positive): Predicts
positive samples as positive; FP (False Positive):
Predicts negative samples as positive; FN (False
Negative): Predicts positive samples as negative;
TN (True Negative): Predicts negative samples
as negative.

TP
B TPAEP ©)
T TPEN ©)

Plot the P-R curve at different confidence
thresholds. The area under the curve represents
the average precision (AP) of that category at a
given loU threshold, denoted as
1

AP= | P(t)dt (7)
Here, P(t) denotes the precision corresponding to
a recall rate of t. The arithmetic mean of AP
across all categories yields mAP. Since this
study includes only the “bird” target category,
the number of categories N=1. The general
formula for multi-category scenarios is:

1
mAP=~ N 4P, (8)

Beyond accuracy, real-time performance and
resource overhead are equally critical. FPS
indicates the number of frames processed per
second, providing an intuitive measure of system
throughput. Params characterizes the model's
parameter count, measured in millions (M).
Weight file size (MB) is also reported to gauge
storage costs. During training and evaluation,
four classification outcomes may occur:
correctly predicting a positive sample as positive
(TP), incorrectly predicting a negative sample as
positive (FP), failing to detect a positive sample
and misclassifying it as negative (FN), and
correctly predicting a negative sample as
negative (TN).
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3.3 Training Results and Visualization
Analysis

The training results of the improved
YOLOvV10n-attention model are shown in Figure
2. It can be observed that the three loss
components (box/cls/DFL) decrease rapidly
during the initial training rounds before entering
a slow convergence phase. Correspondingly, the
Precision, Recall, and mAP metrics on the
validation set exhibit a monotonically increasing
trend, stabilizing in the mid-to-late stages
without abnormal fluctuations indicative of
overfitting or underfitting. Specifically, the
Precision curve achieves a  leap-like
improvement early on and stabilizes at a high
level later, indicating effective suppression of
false positives. Recall continues to improve
throughout training and ultimately maintains a
stable plateau, suggesting mitigation of false
negatives in  long-range and complex
interference scenarios. The mAP@0.50 curve
surpassed its inflection point after approximately
several dozen iterations and gradually
approached saturation. mAP@0.50:0.95 also
exhibited sustained growth, albeit at a slower
rate, reflecting simultaneous improvements in
boundary regression quality and localization
robustness. Combining these curves suggests
that the unified training strategy not only ensures
optimization stability but also progressively
strengthens the model's ability to distinguish and
localize small-scale, low-contrast bird targets.
This provides a reliable detection front-end for
subsequent real-time tracking in practical
systems.

To visually demonstrate model performance,
several representative scenarios were selected
for inference visualization, as shown in Figure 3:
In scenes featuring distant “small black dots”
against highly reflective backgrounds, the
model's confidence curve remained smooth with
minimal bounding box jitter; Under backlighting
and mild thermal disturbance conditions,
candidate boxes maintain stable alignment with
target contours. A small number of challenging
instances only exhibit a slight dip in confidence
scores without systemic missed detections.
Combining training curves and visualization
results, YOLOv1On-attention achieves a
favorable accuracy-stability tradeoff in the
“bird/non-bird” binary classification task and
demonstrates engineering applicability for bird-
deterrent cannon integration.
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Figure 2. Training Results of the Improved
YOLOv10n-Attention Model
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Figure 3. Detection Results of the Improved
YOLOv10n-Attention Model

3.4 Melting Experiment

The ablation results of this experiment are
shown in Table 2. As demonstrated in Table 3,
both precision and recall of Bl improved
compared to BO: precision increased from 0.802
to 0.814, recall rose from 0.761 to 0.773, and
mAP@50 climbed from 0.810 to 0.822.
Combining observations from the training curve
and visualized examples, we infer that the
attention mechanism effectively suppresses false
positives in complex backgrounds while
mitigating false negatives in scenarios involving
long distances, weak textures, and mild thermal
disturbances. Particularly in backlit and highly
reflective scenarios, attention demonstrates
stronger responsiveness to bird silhouettes and
directional textures, yielding more stable
candidate boxes. This manifests in reduced
confidence fluctuations and smoother box
tracking across consecutive frames in replay
videos. Meanwhile, the number of parameters
increased only slightly from 3.10M to 3.20M,
with modest growth in weight size and
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computational load. The frame rate dropped
from 31 to 30, largely maintaining real-time
performance requirements, indicating this
modification achieves a favorable balance
between accuracy and computational efficiency.
Building upon BI1, the introduction of the P5
structural bottleneck (B2) further improved
recall from 0.773 to 0.783, elevated mAP@50 to
0.832, and yielded a slight increase in precision.
Unlike attention mechanisms that primarily
suppress false detections, the PS5 structural
bottleneck focuses on enhancing global semantic
and geometric consistency within large receptive
fields. Its effects are more pronounced in
locating medium-to-large-scale and distant
objects: improved alignment between bounding
boxes and true contours, along with reduced box
drift and jitter. The computational overhead
introduced by this enhancement remains
manageable. Parameters and weights only
slightly increase to 3.22 million and 12.6 MB,
respectively. GFLOPs rise to 9.6, while frame
rates remain stable around 30, imposing no
significant burden on online collaboration.
Sub-metric analysis indicates that improvements
across the three experiments exhibit clear phased
progression: The primary gains from BO to Bl
lie in enhanced “bird-like perception”
capabilities—specifically, more effective capture
of fine textures in complex backgrounds,
manifested as simultaneous increases in
precision and recall. The gains from B1 to B2
were primarily reflected in “more stable and
accurate tracking,” manifested as improved
positioning stability across consecutive frames
and enhancements in the medium-to-high loU
range. Ultimately, B2 achieved the optimal
comprehensive metrics with minimal speed
sacrifice, better meeting the dual requirements of
real-time performance and stability demanded by
airport scenarios.

Table 2. Ablation Experiment Results

Method P R mAP@S0|FPS|Params/M|Weight Magnitude /MB|/GFLOPs
B0:YOLOvV10n 0.802/0.761| 0.810 |31 3.10 12.0 9.0
Bl1:+Attention (backbone) (0.814(0.773| 0.822 |30 3.20 12.4 9.4
B2:+ Attention +C2fCIB@P5|0.819/0.783] 0.832 |30 3.22 12.6 9.6

3.5 Comparative Experiment

Under unified dataset partitioning, image scale
(640%x640), training workflow, and inference
environment, our model was evaluated against
common object detection models. Results are
shown in Table 3. To ensure comparability, all
methods were tested on identical hardware and
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post-processing thresholds. As shown in Table 3,
the proposed YOLOv10n-attention achieves the
highest mAP@50 while maintaining inference
speeds comparable to lightweight single-stage
methods. YOLOv4-tiny exhibits high frame
rates but its accuracy falls significantly below
both our method and the main YOLO series
backbone. Two-stage or transformer-based
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models  (e.g., RT-DETR)  demonstrate
advantages in localization quality but suffer
from high computational demands, large model

attention demonstrates superior engineering
adaptability in airport “bird/non-bird” scenarios:
parameter count and weight size are kept within

sizes, and limited real-time performance. compact scales, GFLOPs increase is manageable,
Considering accuracy, speed, and resource facilitating deployment on resource-constrained
consumption comprehensively, YOLOv10n- edge platforms.
Table 3. Comparative Experimental Results
Method mAP@50 FPS Params/M [Weight Magnitude /MB| GFLOPs

YOLOV4-s 0.806 24 11.2 22.8 28.0
YOLOVv4-tiny 0.612 64 6.1 12.3 6.9
YOLOvV3-tiny 0.472 118 8.7 16.9 8.2
YOLOvVS8n 0.822 29 3.2 12.5 8.8
SSD-MobileNet 0.561 51 54 15.1 3.5
CenterNet 0.495 22 34.2 82.1 28.1
RT-DETR 0.662 16 10.8 44.5 41.2
YOLOvV10n-attention 0.832 30 3.22 12.6 9.6

simultaneously enhances precision and recall,

4. Conclusion while the PS5 structural bottleneck further

Addressing the application challenges of  improves boundary regression quality and

“difficulty in detecting distant small targets, frame-to-frame  stability. Their combined

strong background interference, and high real- implementation  achieves optimal overall

time requirements” in bird strike prevention at
civil airports, this paper focuses on the
identification-localization-locking requirements
for bird-scaring cannons. We constructed the
YOLOv10n-attention model based on an
improved  YOLOvIOn and  completed
verification from model to engineering
integration. The main conclusions are as follows.
(1) Under airport runway and near-field airspace
scenarios, utilizing a unified 640x640 input and
consistent training/inference workflow, the
proposed model achieves real-time detection of
“bird/non-bird” targets on the self-built Airport-
Birds dataset: While maintaining parameters and
computational complexity close to baseline
models, mAP@50 improves to approximately
0.83, with inference speeds around 30 FPS,
meeting the latency requirements for coordinated
bird-scaring cannon deployment.

(2) Without altering the pyramid hierarchy or
neck topology, introducing global attention at
the trunk's upper layers and employing a C2fCIB
bottleneck structure at the P5 branch stabilizes
high-level semantic representation. Experiments
demonstrate this design effectively suppresses
false detections and bounding box jitter in
backlit, highly reflective, and thermal
disturbance  scenarios, while  improving
localization consistency for distant and medium-
to-large-scale targets.

(3) Comparative and
demonstrate  that the

results
module

ablation
attention
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performance with minimal speed sacrifice,
offering a favorable “accuracy-computational
power” balance and edge deployment feasibility.
(4) Focusing on bird-scaring cannon applications,
this paper completes an engineering closed-loop
evaluation of “detection — localization — servo
control.” Under fixed and mobile scenarios,
locking latency is reduced, pointing error
decreases, and tracking retention rate improves.
This validates that front-end enhancements
centered on detection stability directly translate
into efficiency and reliability gains at the control
layer.

(5) This research can integrate with existing
airport security and operational monitoring
systems, deploying as a distributed front-end
along runways and critical airspace to enable all-
weather automated monitoring and deterrence.
Future work will explore multi-modal fusion of
infrared/radar data, lightweight quantization and
distillation, and trajectory-based intelligent
decision-making under broader meteorological
and traffic conditions to further enhance recall of
distant small targets and long-term system
stability.
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