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Abstract: One of the prenatal screening
techniques employed by NIPT (Non-Invasive
Prenatal Testing) is high-throughput
sequencing of foetal cell-free DNA isolated
from maternal peripheral blood. Due to its
high sensitivity, potential for early diagnosis,
and non-invasive nature, it has emerged as a
crucial method for identifying chromosomal
abnormalities in fetuses. The Y chromosome's
concentration is a vital reference point for
quality assessment and anomaly analysis,
necessitating its presence for the
identification of male foetal abnormalities.
However, because the Y chromosome lacks a
definitive marker, the only techniques
available for identifying chromosomal defects
in female embryos are multidimensional
feature fusion analysis and the X
chromosome. For the diagnosis of female
foetal anomalies, this methodology creates
serious gaps and difficulties in feature
utilisation, model stability, and
interpretability. This study utilizes regional
NIPT data to develop a multi-feature fusion
and machine learning-based approach for
identifying chromosomal abnormalities in
female fetuses. SMOTE was employed to
address the class imbalance brought on by the
lack of aberrant samples in the training
dataset. A feature set comprising Z-scores,
GC content, and read duration metrics was
methodically created. The LightGBM model
was used to identify foetal chromosome
abnormalities in females. Experimental
results demonstrate that LightGBM
outperformed Random Forest, XGBoost,
CatBoost, and logistic regression algorithms,
achieving 78.99% accuracy, 82.29%
precision, 78.99% recall, and an F1 score of
80.52% on the test set. The most important
diagnostic characteristics are the
chromosome 21 Z-score, the percentage of
duplicated reads, and the GC content,

according to SHAP analysis, which was used
to improve clinical interpretability. This study
closes a gap in the present NIPT technology
systems for detecting female foetal anomalies
and offers an efficient method for accurate,
interpretable screening of female foetal
chromosomal abnormalities.
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1. Introduction

The main causes of perinatal mortality are death
around birth, stillbirth, spontaneous abortion,
birth malformations, and illnesses are foetal
chromosomal abnormalities [1]. In unscreened
pregnant populations, the inherent likelihood of
foetal chromosomal abnormalities ranges from
0.36% to 6% [2]. Down syndrome, Edward's
syndrome, and Patau syndrome are the most
prevalent chromosomal disorders in fetuses.
Abnormal amounts of free DNA fragments from
foetal chromosomes 21, 18, and 13 are indicative
of these disorders [3]. Finding anomalies in these
chromosomes is essential for identifying
problems in the fetus.
Based on sample gathering techniques, prenatal
screening technologies for expectant mothers can
be divided into invasive and non-invasive testing.
Amniocentesis is the main invasive technique,
which was initially used in the middle of the
1960s [3, 4]. This method, which offers excellent
technical maturity and accuracy, entails putting a
needle into the uterus to extract amniotic fluid
for diagnosis. However, because it is an intrusive
surgery, there is a slight but genuine chance of
miscarriage, and the likelihood is directly related
to the mother's unique situation and the doctor's
expertise. This concern prompted the creation
of non-invasive prenatal screening devices.
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Mid-pregnancy serum screening, a non-invasive
prenatal screening method, made its debut in the
1980s. This technique assesses the risk of foetal
abnormalities by taking a mother's blood in the
middle of her pregnancy. It doesn't harm the
fetus and only needs a blood sample, unlike
invasive procedures. Its drawbacks include a
delayed testing schedule, high false-positive
rates, and poor detection rates. The screening
window was moved to the first trimester in the
1990s. While this early assessment allowed for
earlier risk assessments, it still encountered
issues with false positives and insufficient
accuracy [5,6].
Non-invasive prenatal testing [5-7] became
widely used in 2011. This method allows for
early, non-invasive screening for foetal
chromosomal aneuploidies by obtaining foetal
cell-free DNA from maternal peripheral blood
for high-throughput sequencing. This technology
has emerged as a key technique for prenatal
screening of trisomy 21, 18, 13, and sex
chromosomal anomalies because of its high
sensitivity, non-invasive nature, and detection
rate. It has significantly improved the prevention
of birth abnormalities globally by taking the
place of invasive prenatal diagnostic techniques.
Theoretically, NIPT can now screen for a wide
range of genetic variants, including trisomy,
microdeletion syndromes, sex chromosomal
abnormalities, and even monogenic illnesses. Its
clinical use is still restricted, nevertheless. For
instance, due to limited positive predictive
values for rare autosomal and structural
chromosomal abnormalities, it is typically
recommended to avoid reporting such findings
clinically. The main reason for this is that the
foetal DNA examined in NIPT really comes
from the placenta, hence the results frequently
show chromosomal abnormalities in the placenta
rather than the fetus [8].
Even with this technical framework and cautious
application guidelines, NIPT still has several
limitations when it comes to identifying
chromosomal abnormalities in female fetuses.
According to research on NIPT accuracy by
Yunyun Z et al. [9,10], the existence of the Y
chromosome is linked to the predictive value of
NIPT for identifying foetal chromosomal
abnormalities. The detection accuracy is
significantly higher for fetuses with the Y
chromosome than for those without. This
suggests that Y chromosome concentration is an
essential quality control and diagnostic reference

for male fetuses. However, this marker is entirely
absent in female fetuses, hence abnormality
diagnosis requires integrated and indirect
examination of multidimensional X chromosome
and autosome properties. This discrepancy
makes it difficult to identify abnormalities in
female fetuses from a technical standpoint.
Current techniques for detecting female fetuses
encounter a number of significant obstacles:
First, feature utilisation is still low, and an
over-reliance on Z-scores prevents multi-source
data like maternal BMI, read length distribution,
and GC content from being successfully
integrated. Second, there is a greater chance of
clinical missed diagnoses when there is a
significant class imbalance, as uncommon
anomalous data result in low model recognition
rates. Third, clinical trust and adoption are
hampered by "black-box" decision procedures
and inadequate model interpretability. Fourth,
individual variability is disregarded, as the
generalisability of the model is hampered by
physiological variations among maternal
populations.
Machine learning algorithms, with strong feature
learning and classification abilities, have
recently shown tremendous promise in complex
biological data mining. While previous research
attempted to apply these strategies to NIPT to
improve detection, most studies did not optimise
algorithms or validate systems specifically for
the unique female foetal population [11,12]. To
address this gap, our study introduces a
multi-feature fusion and machine learning
approach for identifying chromosomal anomalies
in female fetuses. We systematically created a
high-dimensional feature set—comprising read
length, GC content, Z-scores, and other
indicators—and examined several popular
ensemble learning techniques to develop an
accurate, automated screening model tailored for
female fetuses. Furthermore, our study employs
the SHAP explainability methodology to tackle
the inherent complexity of machine learning
models.

2. Data Preprocessing

2.1 Data Collection
An NIPT testing dataset supplied by a regional
institution served as the source of the data for
this investigation. 605 female foetal samples
were included in the 1,687 records that made up
the original dataset. Table 1 describes the precise
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data content and structure of the 31 feature
variables that were present in each record.

Table 1. Description of Dataset Variables
Category Variable Name Description

Sample Label Sample ID, Maternal ID
Unique identifiers for
samples and pregnant

women
Pregnant
Woman's

Basic
Information

Age, Height, Weight, BMI
Physiological and
physical index of
pregnant women

Clinical
Testing

Information

Last Menstrual Period Date,
Test Date, Gestational Age,

Number of Blood Draws

Time-related and
procedural records

pertaining to pregnancy
cycle and sampling

Sequencing
Quality
Metrics

Total reads, alignment rate,
duplicate read ratio, GC

content

Key parameters
evaluating overall

sequencing data quality

Chromosome-
Specific
Metrics

Quantitative and quality
control measurements for

target chromosomes

Quantitative and
quality control

measurements for
target chromosomes

Clinical
Diagnosis

Results

Chromosomal aneuploidy
determination, foetal health

status

Clinical diagnosis and
foetal health status

based on test results

2.2 Data Processing
2.2.1 Missing value treatment
To guarantee data completeness and logical
coherence, a statistical analysis of missing
values for important variables was carried out,
and focused imputation techniques were created.
Table 2 provides specific handling options.
Table 2. Missing Value Handling Strategy
Variable
Name

Missing
Proportion

Handling
Method Processing Basis

Last
Menstrual

Period

0%
(female
fetus)

No action
required

The female data column is
complete

Gravida BMI 0.17% Median
imputation

BMI is a continuous variable;
the median is less sensitive to
outliers and better represents

central tendency.

Chromosomal
aneuploidy

(AB column)
88.93%

Uniformly
labeled as
“Normal”

Per data notes, blank entries
indicate no abnormal

detection results; thus,
missing values are

considered clinically normal.
2.2.2 Sample screening
According to clinical consensus, the effective
testing window for NIPT is between 10 and 25
weeks of gestation. This study strictly adhered to
this range for sample selection to exclude
potential testing noise introduced by overly early
or late gestational ages.
2.2.3 Outliers and threshold adjustment
For the GC content metric, the proposed normal
range is 40%-60%. However, preliminary
analysis indicates that a large number of samples
exhibit GC content distributed within the
38%-39% range. Strictly capping the threshold
at 40% would exclude nearly one-third of valid
samples, introducing significant selection bias.

Referencing relevant literature and accounting
for biological and technical variability in actual
testing, this study adjusted the lower bound for
valid GC content to 37%. This maximizes
sample retention while ensuring data reliability.
For other continuous variables such as maternal
age and body mass index (BMI), this study
applied screening based on medically recognized
reasonable ranges: BMI was restricted to 20–40,
and age was controlled within 20–45 years.
Values within these established reasonable
ranges were retained to reflect genuine
individual variation.
2.2.4 Data standardization and encoding
To achieve uniform data formatting and meet the
input requirements of machine learning models,
the following conversions were performed.
For gestational age data conversion, information
in the “weeks + days” format (e.g., 12w+3) was
uniformly converted to a floating-point number
representing weeks. The conversion formula is:

n+m/7 Gestational age  (1)
Where n represents the number of full weeks and
m represents the number of days. This facilitates
model reception and processing.
For continuous numerical features such as GC
content and read length, Z-score normalization is
applied to set their mean to 0 and standard
deviation to 1. This aims to eliminate
dimensional differences between features and
prevent model training bias caused by uneven
numerical ranges. The formula is:

( ) /z x    (2)
This processing eliminates dimensional
differences between features, preventing certain
features with large numerical ranges from
dominating the model training process. For the
categorical variable “Number of Pregnancies,”
one-hot encoding is applied. Since no inherent
ordinal relationship exists among its categories
(1 time, 2 times, ≥3 times), one-hot encoding
converts it into a binary feature, making it more
suitable for machine learning models.
2.2.5 Extract key features
After completing preliminary feature
engineering, a strategy combining model-based
feature importance ranking with correlation
analysis was employed for feature selection. To
identify core indicators most strongly associated
with female foetal abnormalities, this study first
assessed feature importance using the random
forest algorithm. Subsequently, to eliminate the
impact of multicollinearity, a correlation
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coefficient threshold was set to remove highly
correlated features. The specific screening
process is as follows: Iterate through all features
in descending order of importance. For feature i,
if feature j exists in feature set S such that
|Rij|>0.8, then exclude feature i; otherwise, add
feature i to set S. To determine the optimal
number of features, performance curves were
constructed for subsets containing 1 to 10
features. Using 5-fold cross-validation, the
average F1 score of the LightGBM model is
evaluated across different feature subsets. It is
observed that model performance stabilizes and
reaches a plateau when the number of features
reaches 6. Ultimately, while retaining
low-correlation features, the top 6 most
important features are selected as core predictive
indicators. Parameter fitting and analysis are
then performed using a Logit model. Let the
probability of female foetal abnormality be
P(y=1|X). Using the Logit model, the following
6 core features were incorporated:

' '
0 1 2

' ' '
3 4 seq 5 6

P(y=1|x) β +β S +β R
1 P(y=1|x)

+β Q +β Q +β BMI +β T


（ ）=
(3)

Where β epresents the feature weight
(determined via maximum likelihood estimation;
positive values indicate that the feature increases
the probability of an anomaly, while negative
values decrease it); Results from the
log-likelihood model fitted to the training data
show the estimated weights for each feature
parameter as follows: β₀ = -2.5, β₁ = 3.2, β₂ = 2.7,
β₃ = 2.3, β₄ = -1.8, β₅ = 0.9, β₆ = 0.6. Analysis
indicates that the Z-score of chromosome 21
exhibits the most significant positive correlation
with anomaly probability (β₁= 3.2), followed by
the Z-scores of chromosomes 18 and 13. The
test quality score feature (β₄= -1.8) shows a
significant negative correlation, indicating that
higher sequencing quality predicts a lower risk
of foetal abnormalities. Additionally, both
maternal BMI and X chromosome Z-score
showed positive correlations, though their
influence was relatively modest.

2.3 Category Distribution Balancing
The classification target of this study is foetal
chromosomal abnormality types, including: 0
(normal), 1 (Trisomy 13), 2 (Trisomy 18), and 3
(Trisomy 21). The original data exhibits severe
class imbalance, with the vast majority of
samples belonging to the normal category

(89.5%), while the three abnormal categories
collectively account for only 10.5% of the
samples. Training a model directly on this
dataset would result in severe overfitting to the
majority class. To address this issue, this study
employs the Synthetic Minority Over-sampling
Technique (SMOTE) on the training set during
the model training phase. The fundamental
principle of SMOTE is to synthesize new
samples for the minority class by identifying the
k-nearest neighbors of minority samples in the
feature space and generating new samples
through linear interpolation. Specifically, for
each sample in the minority class, one sample is
randomly selected from its k nearest neighbors,
and a new sample is generated. The
mathematical representation is as follows:

( - )

( - )
new i j i new

i j i

x x x x x

x x x





 

 
(4)

Among them are minority class samples, each
randomly selected as a neighbor with λ being a
random number between [0,1]. Through SMOTE,
we reconstruct the class distribution of the
training set to achieve balance, thereby
significantly enhancing the model's ability to
identify anomalous samples.

3. Methodology

3.1 Model Selection and Training Framework
We developed a research framework for fetal
chromosomal abnormality detection by
comprehensively comparing multiple machine
learning models and incorporating SHAP for
interpretability analysis, as detailed in Figure 1.
Experiments employed stratified sampling to
divide the dataset into training and test sets at an
8:2 ratio, maintaining consistent class
distribution. All models underwent
hyperparameter tuning via 5-fold
cross-validation, with F1 score as the primary
evaluation metric to ensure comparability of
model performance under imbalanced data
scenarios.

Figure 1. Research Framework
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3.2 LightGBM
After completing category imbalance handling,
rigorous cross-validation, and comprehensive
comparison across multiple evaluation metrics
revealed that the LightGBM model
demonstrated the best overall performance on
the test set. Its accuracy, F1 score, and AUC
value were significantly superior to those of
other comparison models. The model's
principles are illustrated in Figure 2:

Figure 2. LightGBMModel Schematic
Diagram

LightGBM demonstrated outstanding
performance in this study, with its balance of
high efficiency and high accuracy stemming
from several core design principles: First, the
histogram-based decision tree algorithm
discretizes continuous features into finite bins,
significantly reducing computational complexity
and memory consumption; Second, the
Leaf-wise growth strategy selects nodes with the
greatest gain for splitting, achieving lower loss
function values for the same number of splits.
This enhances model accuracy while
maintaining efficiency. Additionally, the model
natively supports categorical feature handling
without requiring pre-coding and integrates L1
and L2 regularization terms to constrain model
complexity, effectively suppressing overfitting.
For the multi-classification task addressed in this
study, LightGBM employs a one-vs-rest strategy.
It trains independent binary classifiers for each
category and ultimately determines the
prediction result by comparing the output
probabilities across categories.

3.3 Threshold Optimization
The model outputs predicted probabilities for
each sample's chromosome status (normal, T13,
T18, T21). To align with clinical
decision-making needs, this study first
transformed the problem framework into an
anomaly risk identification task, defining the
sample's anomaly probability as:

( ) (T13)+ (T18)+ (T21)
=1- ( )
P ab P P P

P
normal
normal

 (5)

Given that the risk of false negatives far exceeds
that of false positives in clinical settings, directly
adopting the default probability threshold of 0.5
would result in insufficient sensitivity for
identifying abnormal samples. Therefore, this
study employs grid search to systematically
optimize the decision threshold, targeting
maximization of the F2 score. The F2 score is a
weighted variant of the F1 score. By assigning
twice the weight to recall compared to precision,
it better aligns with the core requirement for high
sensitivity in clinical practice. The specific
calculation formula is as follows:

2 (5 ) / (4 )F P R P R     (6)
Here, P denotes, R denotes, and the optimization
process is conducted on the validation set. The
principle is as follows: a series of candidate
thresholds is generated with fine increments
within the probability range [0, 1], and the
corresponding F2 score is evaluated for each
candidate threshold when used as the
classification criterion. Ultimately, the threshold
that maximizes the F2 score is selected as the
optimal decision boundary.

3.4 Explainability Analysis
This study employs the SHAP (Shapley Additive
exPlanations) method for interpretability
analysis to gain deeper insight into the
decision-making mechanism of LightGBM
models and enhance their predictive transparency.
The SHAP framework, based on Shapley value
theory from cooperative game theory, fairly
quantifies each feature's contribution to the
model's prediction outcomes.
The SHAP method decomposes the predicted
value of a single sample into the base value plus
the sum of contributions from each feature. Its
additive explanatory model can be expressed as:

0( ) ( 1 to M)if x i    (7)
Here, f(x) denotes the model's predicted output
for the sample, ϕ0 is the base value (the
average prediction across all training samples),
and ϕᵢ represents the SHAP value of the i-th
feature. A positive value indicates that the
feature increases the prediction probability, while
a negative value suggests it decreases it.
Based on this framework, this study
systematically analyzes model behavior through
three dimensions. First, by integrating SHAP
values across all samples, we calculate the
average absolute value of each feature's
contribution to identify globally significant
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features influencing model decisions. Second,
using SHAP dependency graphs and feature
value distribution scatter plots, we reveal
directional relationships between specific
features and prediction outcomes, clarifying
whether their value changes have positive or
negative impacts on predictions. Finally, for
high-risk samples, we employ SHAP waterfall
diagrams to trace decision-making paths,
visually demonstrating key evidence features
and their contribution directions and magnitudes,
thereby providing clinicians with case-level
decision-making references.
Finally, for specific high-risk samples, SHAP
force-waterfall plots trace the decision path
leading to their predictions, visually displaying
key evidence features along with their
contribution direction and magnitude, thereby
providing case-level decision support for
clinicians.
This analysis method not only verifies the
consistency between the model decision logic
and clinical prior knowledge, but also constructs
a complete interpretation system from global
feature importance to case decision
interpretation, which significantly enhances the
credibility and acceptability of the model in
clinical application.

4. Results and Analysis

4.1 Feature Selection and Parameter Tuning
Through a feature selection framework
combining random forest and logistic regression
(with feature importance rankings shown in
Figure 3), six core features with high
significance and strong independence were
identified for subsequent modeling. These
features include: chromosome 21 Z-value,
chromosome 18 Z-value, chromosome 13
Z-value, repeat sequence ratio, GC content, and
maternal BMI.

Figure 3. Feature Importance Screening
This study employed SMOTE oversampling
technique to equalize the number of three types
of chromosomal abnormality samples with
normal categories, thereby constructing a fully
balanced dataset (specific category distribution
comparison before and after sampling is shown
in Table 3) to ensure the model can learn features
of all categories equally.

Table 3. Comparison of Class Distributions before and After SMOTE Sampling
Category Pre-sampling Sample

Size
Pre-sampling

Proportion (%)
Post-sampling Sample

Size
Post-sampling
Proportion (%)

Growth
Multiple

0 530 89.5% 530 25.0% 1.0x
1 25 4.2% 530 25.0% 21.2x
2 30 5.1% 530 25.0% 17.7x
3 7 1.2% 530 25.0% 75.7x

To optimize model performance and control
complexity, this study systematically tunes
model hyperparameters using a grid search
method. Cross-validation was employed to
evaluate the generalization capabilities of
different parameter combinations, ultimately
determining the optimal parameter configuration
of the model as shown in Table 4.
4.2 Model Performance Comparison
Figure 4 presents a comparison of five models'
performance on independent test sets and their
overall trends, with detailed metrics listed in
Table 5. LightGBM outperforms all models in
accuracy, precision, recall, and F1 score,
achieving 80.52% F1 score and 78.99%.
It proved its superiority in processing such
complex and high-dimensional medical data.
The worst performance of the logistic regression
model indicates that there are complex nonlinear

relationships in the data, which are difficult to
capture effectively by the linear model.

Table 4. Optimal Hyperparameters
Model Name Number of

Decision Trees
Maximum

Depth
Learning

Rate
Random

Seed
Random Forest 100 10 - 42

XGBoost 100 6 0.1 42
LightGBM 100 8 0.1 42
CatBoost 100 6 0.05 42

Logistic Regression - - - 42

Figure 4. Machine Learning Model
Performance Comparison
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Table 5. Performance Comparison of Different Machine Learning Models
model Accuracy Precision Recall F1_Score Roc-AUC PR_AUC

RandomForest 0.7731 0.7880 0.7731 78.05% 0.4543 0.0984
XGBoost 0.7899 0.8180 0.7899 80.01% 0.4499 0.1153

LightGBM 0.8151 0.8263 0.8151 81.99% 0.4724 0.1190
CatBoost 0.7647 0.7947 0.7647 77.94% 0.4383 0.1113

LogisticRegression 0.3529 0.7929 0.3529 45.89% 0.4550 0.2377

4.3 Feature Importance and SHAPAnalysis
Based on the SHAP (Shapley Additive
exPlanations) framework, this study conducted
an in-depth analysis of the predictive mechanism
of the LightGBM model, revealing the
decision-making basis for chromosome
abnormality classification from two dimensions:
feature importance and contribution.

Figure 5. LightGBM Feature Importance
Ranking

Figure 5 illustrates the global feature importance
ranking based on SHAP values. The feature
importance analysis indicates that the model
successfully identified key biomarkers closely
associated with chromosomal abnormalities.
Among these, the normalized GC content of
chromosome 13, the Z-score of chromosome 21,
and the genome-wide GC content ranked as the
top three most important features. This ranking
aligns closely with the clinical diagnostic focus
for Down syndrome (T21) and Patau syndrome
(T13). Data quality metrics such as the Z-score
of the X chromosome and the proportion of
duplicate reads also demonstrated significant
contributions, highlighting the critical impact of
sequencing quality on diagnostic accuracy.

Figure 6. Feature Importance Summary
Based on SHAPValues

The SHAP interaction analysis in Figure 6

further reveals the complex relationship between
features and prediction outcomes. Chromosome
13's GC content_normalized exhibits a distinct
bidirectional influence pattern, where its
numerical changes directly correlate with
increases or decreases in abnormal risk. The
Z-score on chromosome 21 exhibits a typical
threshold effect: its contribution to anomaly
prediction sharply increases when exceeding the
statistically significant threshold, aligning with
clinical practice standards based on Z-score
interpretation. The overall importance of the GC
content feature group reflects the complementary
value of global and local GC content metrics,
collectively forming a comprehensive quality
control system.
From a clinical interpretability perspective, this
analysis validates the biological plausibility of
model decisions. The prominent importance of
chromosome-specific indicators aligns with the
pathological mechanisms of aneuploidy
detection, while the threshold response
characteristics of Z-score indicators resonate
with established statistical judgment criteria.
This SHAP-based white-box analysis not only
enhances the model's credibility in medical
applications but also provides valuable feature
importance references for prenatal diagnosis,
advancing the transparent application of machine
learning in clinical decision-making.

4.4 Threshold Optimization Effect
The performance comparison before and after
threshold optimization is shown in Table 6. After
optimization, the model's recall rate increased
from 72.5% to 85.2%, indicating that the model
can detect more true abnormal cases and
significantly reduces the risk of clinical missed
detections. Although the precision rate decreased,
the F2 score improved significantly, better
meeting the risk control requirements of this
application scenario.
Table 6. Performance Comparison before and

After Threshold Optimization
Scenario Threshold Precision Recall F1

Score
F2

Score
Before Optimization 0.5 85.1% 72.5% 78.3% 75.2%
After Optimization 0.796 80.3% 85.2% 82.7% 84.3%
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5. Discussion and Conclusions

5.1 Discussion
This study successfully developed an efficient
and interpretable machine learning model for
detecting chromosomal abnormalities in female
fetuses. The model demonstrates four key
advantages: First, it establishes a systematic
workflow from data preprocessing to model
interpretation, ensuring reproducibility and
reliability. Second, through multi-model
comparison and fine-tuning, LightGBM
outperforms other models in processing
high-dimensional NIPT data. Third, threshold
optimization prioritizes abnormal sample
detection (high recall rate), aligning with
prenatal screening's clinical principle of
prioritizing sensitivity for high-risk cases.
Finally, SHAP analysis enhances decision
transparency, transforming the "black box"
model into a clinically understandable "gray
box" that helps clinicians interpret diagnostic
criteria and facilitates human-machine
collaborative decision-making.
However, this study has several limitations: First,
the training data originates from a single region
with predominantly high maternal BMI, limiting
sample representativeness. The model's
generalizability requires further validation on
more diverse datasets. Second, current features
are extracted solely from routine NIPT test
reports. Integrating deeper sequencing data (e.g.,
coverage depth in specific genomic regions)
may further enhance model performance in
future studies.

5.2 Conclusions
To address the unique challenges in identifying
female foetal chromosomal abnormalities using
NIPT technology, this study developed a
machine learning-based composite
decision-making process. This approach first
identifies key features through medical a priori
knowledge and feature importance evaluation,
then employs a two-stage classification strategy
to determine chromosomal abnormalities. In the
first stage, a LightGBM binary classification
model is established. The total probability of a
sample being predicted as any of the T13, T18,
or T21 anomaly types serves as the basis for
determining the presence of chromosomal
abnormalities. The second stage further employs
a “one-versus-many” strategy for samples

initially screened as high-risk. Independent
binary classifiers are trained, and the precise
identification of the abnormal type is achieved
by comparing the predicted probabilities of each
category, where the final type is determined as
argmax (P (T13), P (T18), P (T21)).
Through decision curve optimization, the
optimal probability threshold for distinguishing
abnormal from normal samples was determined
as 0.796. Based on this threshold, the judgment
rule is established: if P (abnormal)> 0.796, the
sample is classified as high-risk and requires
confirmation; otherwise, it is deemed normal.
This approach balances screening sensitivity
with diagnostic specificity, providing a reliable
and interpretable solution for identifying
chromosomal abnormalities in female fetuses.
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