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Abstract: Accurate prediction of the
Consumer Price Index (CPI) is crucial for
policymakers to grasp a country’s economic
operation rules and has a significant impact
on policymaking and resource allocation.
However, the nonlinear and nonstationary
characteristics of financial data pose
significant challenges to achieving accurate
and robust predictions. This paper proposes a
novel multi-step forecasting ensemble model
that integrates Hiking Optimization
Algorithm-optimized Variational Mode
Decomposition (VMD), Multilayer
Perceptron (MLP), and Bidirectional Long
Short-Term Memory (BiLSTM) networks
called HOA-VMDMLP-BiLSTM (dynamic
weighting). Initially, cubic spline
interpolation transforms monthly data into
weekly frequency to address sample size
limitations. Subsequently, the Hiking
Optimization Algorithm (HOA) adaptively
determines the optimal decomposition modes
in VMD, obtaining the independent and
stationary components while reducing noise
interference. The BiLSTM and MLP
networks then respectively process the
decomposed modes and interpolated weekly
series, with their predictions dynamically
weighted through inverse error variance
weighting to get the final value. Experimental
results show that the Model’s determination
coefficients (R²) values for 1 step, 5 step, and 9
step predictions are 0.9964, 0.9776, and
0.9411 respectively. The Diebold-Mariano test
rejects the null hypothesis at the 1%
significance level, indicating the proposed
model’s statistical superiority over
benchmark methods. Notably, the proposed
model demonstrates not only excellent in 1
step prediction but also robust and reliable in
multi-step forecasting.
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1. Introduction
Consumer Price Index (CPI), which reflects
price fluctuations of goods and services related
to residents’ daily lives, serves as a crucial
indicator for predicting inflation and provides
valuable references for assessing national
economic development trends. Accurate CPI
forecasting not only helps gauge consuming
willingness but also offers significant guidance
for industrial restructuring, resource allocation
optimization, and consumption pattern
upgrading. “The Belt and Road” represents an
emerging market with substantial potential,
where China’s pivotal role as the initiator
profoundly influences regional development.
Current research primarily focuses on policy
aspects such as supply chain transfer impacts,
engineering project cooperation, cultural export
determinants, and business climates. These
studies aim to develop a deep learning model as
reference framework for forecasting economic
trends in “The Belt and Road” countries [1].
Early research on CPI prediction predominantly
employed traditional econometric approaches,
including basic trend models, autoregressive
models, ARIMA, SARIMA, and exponential
smoothing. These linear-based models exhibit
limitations in capturing complex nonlinear
patterns while demonstrating high sensitivity to
parameter selection, where different parameters
yield substantially varied outcomes. Furthermore,
requirements for stationarity in models like
ARIMA and SARIMA may lead to information
loss through excessive differencing. Given these
constraints, machine learning methods have
gained prominence among researchers due to
their superior prediction accuracy and enhanced
generalization capabilities [2].
With the remarkable success of machine
learning, particularly neural network models in
computer vision applications, scholars
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worldwide have progressively introduced these
techniques into CPI forecasting tasks. Sun
utilized a backpropagation (BP) neural network
for monthly CPI forecasting, achieving excellent
fitting performance [3]. Lu, Zhao, and Bi
integrated fuzzy information granulation with
support vector machines (SVM) for CPI
prediction, with experimental results indicating
superior model accuracy [4]. Zeng innovatively
processed prediction errors generated by
traditional statistical models through random
forest (RF) algorithms, subsequently combining
outputs through additive integration [5]. This
approach demonstrated that integrating machine
learning models to handle nonlinear components
significantly outperformed standalone traditional
statistical models. Sarangi, Sahoo, and Sinha
proposed an artificial neural network (ANN)
optimized by particle swarm optimization, with
empirical evidence confirming enhanced
accuracy in forecasting India’s CPI [6].
Furthermore, financial time series exhibit non-
stationarity characteristics. Direct modeling
without appropriate feature preprocessing
substantially hinders prediction accuracy
improvements. The decomposition-ensemble
framework has emerged as an effective solution,
initially decomposing original sequences
through signal processing techniques,
subsequently feeding these subsequences into
machine learning models for individual
prediction, and ultimately aggregating partial
results for final forecasting. Empirical analyses
across various domains have validated the
efficacy of this methodology. Wen and Xu
employed Empirical Mode Decomposition
(EMD) to decompose wind turbine power time
series into intrinsic mode functions (IMFs),
constructing prediction models based on
component characteristics [7]. Their
experimental results demonstrated superior
performance compared to traditional approaches.
However, EMD decomposition suffers from
inherent limitations including spurious
components and mode mixing phenomena. To
address these issues, researchers have introduced
Ensemble Empirical Mode Decomposition
(EEMD) as an enhanced decomposition
methodology. Tai and Liu developed an EEMD-
PSO-SVM hybrid model for monthly CPI
forecasting, implementing EEMD for noise-
filtered decomposition followed by Particle
Swarm Optimization (PSO) for parameter
hunting in Support Vector Machines (SVM) [8].

Empirical evaluations confirmed this model’s
superiority over ANN, ARIMA, and standalone
SVM. Ying and Wang proposed an EEMD-BP
forecasting framework, with comparative studies
revealing that the combined model outperformed
single-algorithm approaches in CPI forecasting
applications [9].
Particularly, Long Short-Term Memory (LSTM)
networks demonstrate distinct advantages over
Recurrent Neural Networks (RNN). This has
prompted increasing adoption of LSTM-based
hybrid models and architectural improvements in
forecasting applications. Fang et al. proposed a
CEEMDAN-Pearson-LSTM model that extracts
critical water quality indicators through
CEEMDAN decomposition and Pearson
correlation analysis, with validation across five
monitoring stations confirming its effectiveness
in dissolved oxygen prediction [10]. Y. Zhou,
Peng, and Bai designed a CNN-LSTM
architecture for daily blood collection
forecasting in major cities of China,
demonstrating optimal performance across
evaluation metrics due to its superior dynamic
tracking and feature recognition capabilities [11].
Dong and Tang innovatively integrated multi-
representational attention and soft-attention
mechanisms into LSTM networks, constructing
an ATT-LSTM-ATT model for CPI prediction
that outperformed benchmark models in both
precision and robustness [12]. Furthermore, the
advancement of signal processing techniques has
popularized Variational Mode Decomposition
(VMD) [13]. An adaptive decomposition method
with physical meaning, as evidenced by
extensive applications [14]. Researchers have
addressed VMD’s hyperparameter optimization
challenges through various metaheuristic
approaches including Particle Swarm
Optimization (PSO) and Bayesian Optimization
(BO) [15, 16]. These methodological
developments provide novel perspectives for
CPI forecasting research.
Accordingly, this paper proposes a novel hybrid
model named HOA-VMD-MLPBiLSTM
(Dynamic Weight) to address the nonlinear and
non-stationary characteristics in CPI forecasting,
which integrates Hiker Optimization Algorithm
(HOA), Variational Mode Decomposition
(VMD), Multilayer Perceptron (MLP), and
Bidirectional Long Short-Term Memory
(BiLSTM). The implementation framework
consists of three main phases: First, the HOA is
introduced to determine the optimal number of
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decomposition modes in VMD. Subsequently,
the decomposed modal components are fed into
the BiLSTM model for prediction training, while
the original sequence is simultaneously
processed through the MLP model. Finally,
dynamic weights are assigned to both models
through the inverse error variance method to
generate final predictions. This architecture
enables the model to simultaneously capture
implicit latent patterns through BiLSTM and
explicit global features through MLP, thereby
enhancing overall predictive capability.
Experimental results demonstrate superior
performance of the proposed model in both one-
step and multi-step forecasting scenarios.
Furthermore, Diebold-Mariano (DM) tests
confirm statistically significant differences in
predictive accuracy between this model and
comparative benchmarks.
The contributions of this study are primarily
reflected in two aspects:
First, due to the challenges in collecting and
calculating CPI data, making the sample sizes
are typically limited. While previous research
predominantly focused on developing small-
sample prediction models. Our experimental
results demonstrate that predictions based on
cubic spline-interpolated data achieve
satisfactory performance. Furthermore, we
introduce the HOA method to determine the
optimal number of VMD modes by minimizing
energy entropy, thereby obtaining independent
and stationary decomposition results to enhance
data quality for subsequent model training.
Second, we design an ensemble forecasting
model combining MLP and BiLSTM. These two
models respectively capture extrinsic trend
features and intrinsic detailed features of CPI
data, the inverse error sum of squares method is
employed to determine model weights, then
ultimately generating final predictions. The core
concept of this framework lies in utilizing trend
features to govern detailed features, ensuring
precise and robust forecasting performance.
The paper is structured as follows: Section 2
reviews relevant methodologies, including the
HOA-VMD mechanism, theoretical foundations
of MLP and BiLSTM, and model integration
strategies. Section 3 describes the details of data
preprocessing, hyperparameter selection, and
multi-perspective experimental analyses. Section
4 gives the conclusions and future research
directions.

2. Methodology

2.1 HOA-VMD Decomposition Framework
2.1.1 Hiking optimization algorithm
The Hiker Optimization Algorithm, proposed
by Oladejo et al. [17], is a metaheuristic
optimization algorithm inspired by hikers’
strategies to ascend mountainous terrains
while avoiding steep slopes to maintain
hiking velocity. Its mathematical foundation
stems from Tobler’s Hiking Function (THF)
[18], an exponential model quantifying
terrain steepness to determine optimal
traversal speed. The THF is defined as:

,3.5 0.05
, 6 i tS
i tW e  (1)

, ,tani t i t
dhS
dx

  (2)

where
,i tW denotes the velocity of hiker i at

time t,
,i tS denotes the steepness of the terrain

at the hiker i at time t, dh and dx denotes the
change in elevation and horizontal distance
traversed by the hiker, respectively, and

, [0,50 ]i t   corresponds to the slope angle of
the terrain that hiker i at time t.
HOA updates its parameters based on the hikers’
social mindset and their individual cognitive
capabilities. The movement velocity of each
hiker is governed by Tobler’s hiking function,
which incorporates three key factors: the
leader’s position in the hiker group, the current
hiker’s position, and scan factor (SF). The
mathematical formulation is expressed as:

, , 1 , , ,( )i t i t i t best i t i tW W       (3)
where

, [0,1]i t  is a random variable, denote the
control coefficient.

best denote the position of the
leader in the hiking group,

,i t denote the
position of hiker i at time t.

,i t denote the SF of
hiker i. Specifically,

,i t defined as a random
integer within the interval [1,2] . The SF regulates
the distance between individual hikers and group
leaders, where the specified range ensures that
group members neither cluster excessively near
the leader nor diverge too far from it. This
configuration achieves dual objectives:
maintaining search effectiveness while enabling
individual hikers to visually perceive the
leader’s position and receive its guidance signals.
Considering the velocity, the position update
formula is:

, 1 , ,i t i t i tW    (4)
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2.1.2 Variational mode decomposition
Variational Mode Decomposition exhibits strong
robustness and adaptive signal decomposition
capabilities, with well-established applications in
non-stationary signal processing, vibration signal
analysis, and image processing [19]. Compared
to conventional Empirical Mode Decomposition
(EMD), VMD effectively mitigates mode
aliasing and noise interference in signals. Given
the nonlinear and non-stationary nature of fixed-
based CPI index data, the VMD algorithm can
efficiently extract trend and cyclical features
while decomposing complex nonlinear
sequences into multiple stationary components.
The core principle of VMD involves
decomposing raw signals into several intrinsic
mode functions (IMFs) and a residual term
through three steps: variational problem
construction, solution derivation, and parameter
optimization. The decomposition efficacy is
evaluated using the energy entropy (He) of IMFs,
where minimizing this entropy enhances
decomposition precision and modal
independence.
(1) Variational problem construction
Assuming the original CPI data consists of a
finite number of intrinsic mode functions (IMFs),

( )ku t denotes the decomposed components,
formulate and solve the total bandwidth
summation of ( )ku t , then converting it into a
constrained variational problem. The procedure
formula is:
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where ( )f t denote the original CPI data, K denote
the number of decomposed modes,    ,k ku w

correspond to the set of decomposed intrinsic
mode functions and their central frequency
sequences, respectively.

t denote the gradient
operation, ( )t denote the Dirac distribution, 

denote the convolution operator, and j denote the
imaginary unit.
(2) Solution derivation
To solve the variational extremum problem in
Step (1), we introduce a quadratic penalty factor
 to mitigate the effects of Gaussian smoothing
and employ a Lagrangian multiplier  to
facilitate the transformation into an
unconstrained variational problem. The
converted formula is expressed as:
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where , denote the inner product operator. The
Alternating Direction Method of Multipliers
(ADMM) is employed to resolve the variational
problem, then iteratively updating the saddle
point of the Lagrangian function, which
corresponds to the optimal modal solutions. The
iterative update formula is:
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where ˆ ( )f w , ˆ ( )ku w and ˆ( )w denote the Fourier
transforms of ( )f t , ( )ku t and ( )t respectively. 

denote the noise tolerance.  denote the
convergence accuracy ( 0  ), the iteration
process terminates when the relative error
becomes smaller than the convergence accuracy,
ultimately yielding K Intrinsic Mode Function
(IMF) components.
(3) Parameter optimization
The modal number K significantly influences the
decomposition performance of Variational Mode
Decomposition [20]. Excessive modes may
introduce spurious components, while
insufficient modes might fail to adequately
separate different frequency constituents within
the signal. Through the Hybrid Optimization
Algorithm, the optimal K is determined when
the Energy Entropy (He) reaches its minimum.
The He formula is:
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lg
K

j j
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He p p

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j
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j
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E
p

E
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E X

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where
jp

denote the energy proportion of each
Intrinsic Mode Function (IMF) relative to the
total energy.

jE denote the energy of IMFj.
jX

denote the amplitude of IMFj. To summarize,
based on the iterative optimization framework of
the HOA, the schematic diagram of the HOA-
VMD is illustrated as Figure 1.
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Figure 1. HOA-VMD Flowchart

2.2 Multilayer Perception
The Multilayer Perceptron (MLP), as a classical
machine learning model, typically comprises an
input layer, one or more hidden layers, and an
output layer. Firstly, the input layer receives a
set of input data, where each feature corresponds
to a distinct weight. The input signals undergo a
linear combination of these weights, followed by
the addition of a bias term b, the formula is

1

n

i i
i

w x b


 . Second, the weighted summation

result is transmitted to neurons in the hidden
layer. Each neuron in this layer incorporates a
nonlinear activation function, which applies a
nonlinear transformation to its input. Then the
transformed signal is subsequently propagated to
neurons in the output layer, the formula is

1
( )
n

i i
i

f w x b


 . Third, the activation function of the

output layer converts the received data into the
final output. The architectural diagram of the
MLP framework is illustrated in Figure 2.

Figure 2. Structure of MLP

2.3 Bidirectional Long Short-Term Memory
Network
2.3.1 Long short-term memory
Long Short-Term Memory networks (LSTM), an
optimized variant of Recurrent Neural Networks
(RNN), address the gradient vanishing and
explosion issues inherent in traditional RNN
models when processing lengthy input sequences.
The LSTM architecture comprises recurrent
memory units containing one or more cell
structures (forget gate, input gate, output gate),
as illustrated in Figure 3. Owing to its inherent
memory mechanism, LSTM demonstrates
superior capability in modeling temporal
dependency characteristics of Consumer Price
Index (CPI) data.

Figure 3. Structure of LSTM
2.3.2 Bidirectional long short-term memory
network
Given that Long Short-Term Memory (LSTM)
networks can only learn information along the
forward temporal axis, while in time series
prediction tasks such as Consumer Price Index
(CPI) forecasting, both historical and future data
may influence predictions at the current timestep,
we employ a Bidirectional Long Short-Term
Memory Network (BiLSTM) to
comprehensively capture temporal features [21].
This architecture utilizes dual LSTM hidden
layers for forward and reverse computations,
thereby overcoming the limitations of
unidirectional LSTM in learning comprehensive
temporal information. The structure of the
BiLSTM is illustrated in Figure 4.
For the forward LSTM, each timestep’s input
vector is processed to generate a forward hidden
state sequence (Equation 9), which encodes all
information from the sequence’s starting
position to the current timestep. Conversely, the
backward LSTM produces a backward hidden
state sequence (Equation 10) that encapsulates
information from the sequence’s endpoint to the
current timestep. The final BiLSTM output is
derived through joint computation of these
bidirectional hidden state sequences.
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Figure 4. Structure of BiLSTM
1 1( , , )t t t th LSTM h x B 

  
(9)

1 1( , , )t t t th LSTM h x B 
  

(10)

( [ , ] )k t t ko σ M h h α 
 

(11)

where
th
 and th


denote the forward and

backward hidden sequence, respectively. o
denotes the output of the BiLSTM.

tx denote the
input value at timestep t. 1th 


denote the hidden

state of the forward LSTM at the t -1th input
point,

1th 

 corresponds to the hidden state of the
backward LSTM at the (t+1)th input point.

1tB 



and
1tB 

 denote the cell states of the forward and
backward LSTM at the (t-1)th and (t+1)th input
point, respectively. σ denote the activation
function,

kM denote the weight matrix, and
kα

denote the bias vector.

2.4 Multi-step Forecasting
Multi-step ahead prediction involves utilizing
historical data to forecast values over future
times. Taking CPI prediction as an example,
single-step prediction employs a d K
dimensional sequences (where K denote the
number of decomposition modes, K = 1 if no
decomposition is applied) prior to time N as
input to predict the CPI value at N + 1. Multi-
step prediction maintains identical input
dimensions but extends the forecasting horizon
to H subsequent steps. This study specifically
adopts the direct strategy for multi-step value
prediction.

2.5 Inverse Error Variance Method
The Inverse Error Variance Method indicates
that a larger error sum of squares in a prediction
model signifies poor model performance and
corresponds to a smaller weight coefficient.
Conversely, a smaller error sum of squares
suggests better performance in forecasting tasks,
which should be assigned a larger weight
coefficient. After obtaining two different sets of
predictions from the MLP and HOA-VMD-
BiLSTM models, it is necessary to calculate the

weighted coefficients for these two prediction
methods to achieve the optimal prediction
outcome. The formula is:

1

1

1

i
i m

i
i

Dα
D











1, 2, ,i m  (12)

2

1

( ( ) ( ))
N

i ip
t

D y t y t


  1,2, ,t N 

where
iα denote the weight coefficient of the ith

model,
iD denote the sum of the squared errors

of the ith model, ( )y t denote the actual CPI value
and ( )ipy t denote the predicted value from the ith
model. The predictive result of the final
combined model is computed using the
following formula:

1 1 2 2p p py α y α y  (13)

2.6 Proposed Method
This study proposes a robust and novel hybrid
model, termed HOA-VMD-BiLSTMMLP
(Dynamic weight), abbreviated as HV-D(M-B),
for forecasting the CPI. First, to address the
limited sample size of CPI data, cubic spline
interpolation was applied to the original time
series, with the interpolated sequence
subsequently serving as the new original
sequence. Subsequently, considering the critical
sensitivity of VMD to decomposition mode
quantity, the HOA was employed to determine
the optimal decomposition parameter K, thereby
generating more stationary and independent
subcomponents. Finally, to ensure robust and
accurate predictions, a hybrid model learning
architecture was implemented: the VMD-derived
subcomponents were fed into a BiLSTM
network to capture intrinsic patterns, while the
original sequence was processed through a MLP
to learn global characteristics; dynamic weight
allocation between the two models was achieved
through the inverse sum of squared errors
method and then obtain the final predict value.
Furthermore, given the importance of both short-
and long-term CPI forecasting for policymakers
to conduct comprehensive assessments, this
research incorporates one-, five-, and nine-step-
ahead predictions. The comprehensive
framework is illustrated in Figure 5.

3. Experimental Design and Analysis

3.1 Data Processing
The dataset was sourced from the Belt and Road
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Initiative module of the CSMAR (China Stock
Market & Accounting Research) Database,
comprising fixed-base Consumer Price Index
(CPI) monthly data for China from January 2000
to July 2024. The experimental environment was
configured with Python 3.12, PyTorch 2.6.0,
CUDA 12.6, and an RTX 4060 GPU. The
dataset was partitioned into training and test sets
using an 8:2 split ratio, with chronological
ordering preserved to maintain temporal
integrity. The cubic spline interpolated CPI time
series is shown in Figure 6, where the horizontal
axis indicates weekly sequence indices and the
vertical axis represents CPI values.

Figure 5. Decomposition-Prediction Process
Prior to model training, the data are normalized
to the [0,1] range through minmax scaling. This
preprocessing step mitigates noise interference
during neural network training, enhances the
precision of parameter updates, and
consequently stabilizes the model training
process. The normalization procedure is
mathematically formulated as follows:

( min ) / (max min )t t t t tz z z z z   (14)
where tz denote the original input data and tz
denote the normalized data.
The descriptive statistical analysis results of
China’s Consumer Price Index (CPI) are shown
in table 1. The following conclusions can be
drawn from the data presented: The Jarque-Bera
(J-B) test statistic indicates that China’s CPI
rejects the null hypothesis of normal distribution
at the 1% significance level. The Ljung-Box test
results demonstrate that China’s CPI rejects the
null hypothesis of no autocorrelation at the 1%
significance level, revealing that the series
exhibits both 10th-order lag autocorrelation and
long memory characteristics. Furthermore, the
BDS test results show that China’s CPI rejects

the independent and identically distributed null
hypothesis at the 1% significance level,
suggesting the presence of nonlinear
dependencies in the data series.
Additionally, we conducted an Augmented
Dickey-Fuller (ADF) test to examine the
stationarity characteristics of China’s Consumer
Price Index. As shown in Table 2, the critical
values at the 1%, 5%, and 10% significance
levels are -3.4360, -2.8640, and -2.5681
respectively. The test statistic (-0.1207) exceeds
all critical values and p-value greater than 0.05,
leading us to fail to reject the null hypothesis
that the series is non-stationary.
Based on the comprehensive analysis of Table 1
and Table 2, we conclude that China’s
Consumer Price Index exhibits non-normality,
autocorrelation, nonlinear dependencies, and
non-stationarity characteristics. These findings
collectively reveal fundamental properties of the
series and provide a comprehensive
understanding of its statistical behavior.
Table 1. Results of Statistical Analysis of CPI

of China
Index CPI

Sequence Length 1177
Mean 106.0294

Standard deviation 17.8504
Maximum 133.5752
Minimum 79.2490

Jarque-Bera 0.96e2

Q(10) 1.16e4

BDS 2.15e2

Note: The null hypothesis rejected at the
significance levels of 10%, 5%, 1% is indicated
by  ,   , and    , respectively. J-B is the
Jarque-Bera statistic. Q(10) refers to the Ljung-
Box statistic with sequence correlation up to 10
orders. BDS is the Brock-Dechert-Scheinkman
statistic.
Table 2. ADF Test Results for CPI of China

T
statistic Prob The 1%

T statistic
The 5%

T statistic
The 10%
T statistic

CPI -0.1207 0.9473 -3.4360 -2.8640 -2.5681

3.2 Series Decomposition
To effectively address noise interference in
forecasting, we adopted a hybrid method
integrating Variational Mode Decomposition
(VMD) with the Hiking Optimization Algorithm
(HOA) to enhance the accuracy and robustness
of decomposition results. The HOA parameters
were configured with a population size of 30 and
maximum iterations of 25. The convergence
process of HOA illustrated in Figure 7, which
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shows that fitness stabilized after the 2nd
generation, indicating algorithm convergence to
optimal solutions. And decomposition results are
presented in Figure 8. Furthermore, to ensure
model stability and mitigate noise impacts on
predictive performance, residual components
from the decomposition were discarded. The
resulting intrinsic mode functions (IMFs 1-6)
were subsequently fed into the BiLSTM network
for model training.

3.3 Hyperparameter Configuration
During model training, window size, epochs,
batch size, and neuron count significantly impact
model prediction performance. Specifically, the
window size refers to the length of input data
when predicting the next value, determining the
model’s ability to capture short-term or long-
term dependencies in time series. Epochs
indicate how many times the training data is
fully traversed, where an appropriate epoch
allows gradual learning of data patterns to
enhance predictive capability. Batch size
represents the number of samples used per
training step, with proper batch sizes improving
computational efficiency, reducing training
oscillations, and increasing gradient descent
direction accuracy. Neuron count denotes the
number of nodes in each neural network layer,
where suitable neuron quantities mitigate
overfitting risks while enhancing model
expressiveness. Through the inverse sum of
squared errors method, the weights for MLP and
BiLSTM in the proposed ensemble model were
determined as 0.1 and 0.9, respectively. The
hyperparameters of the proposed model are
detailed in Table 3.

3.4 Comparative Analysis of Experimental
Results
In this paper, we developed a novel ensemble
model named HOA-VMD-MLP-BiLSTM
(Dynamic weight), abbreviated as HV-D(M-B),
to predict China’s Consumer Price Index. The
weights of MLP and BiLSTM were calculated as
0.1 and 0.9 respectively using the inverse sum of
squared errors method. This model was
compared with six baseline models: HOA-
VMD-MLP-BiLSTM (Fixed weight),
abbreviated as HV-F(MB); HOA-VMD-MLP-
LSTM (Dynamic weight), abbreviated as HV-
D(M-L); MLP; BiLSTM; HOA-VMD-BiLSTM,
abbreviated as HV-B; HOA-VMD-LSTM,
abbreviated as HV-L. Additionally, we

conducted 1-, 5-, and 9-step forecasting across
all models to provide comprehensive long-term
predictions. This approach delivers precise
guidance for policymakers to assess future
trends and better respond to market fluctuations.

Figure 6. Cubic Spline Interpolated CPI Time
Series

Figure 7. Convergence Diagram of the HOA
for VMD

Figure 8. HOA-VMD Decomposes the CPI
Data

3.4.1 Ablation study
For model evaluation, the predictive
performance was assessed using loss functions
(RMSE, MAE, MAPE) calculated from
forecasting results. These metrics provide an
intuitive understanding of model prediction
capabilities, thereby demonstrating the
effectiveness of the proposed approach. Error
values closer to zero indicate smaller prediction
errors and superior model performance. The
mathematical definitions of these three loss
functions are shown below:

2

1

ˆ( ) /
N

t t
t

RMSE y y N


  (15)

1

ˆ /
N

t t
t

MAE y y N


  (16)
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1

ˆ100%* ( ) / /
N

t t t
t

MAPE y y y N


  (17)

where
ty denote the true value at time t, ˆty

denote the predicted value, and N denote the
number of samples in the test set.
Additionally, this study utilizes the coefficient of
determination 2R to assess the goodness-of-fit
between predicted values and true values. Values
of 2R closer to 1 indicate a stronger model fit.
The mathematical expression for 2R is shown
below:

2 2 2

1 1

ˆ1 ( ) / ( )
N N

t t t t
t t

R y y y y
 

     (18)

where ty denote the mean value of original test
set.
The loss function values of each model for 1-, 5-,
and 9-step forecasting are shown in Table 4. By
analyzing the tabular data, the following
conclusions can be drawn.
The comparative analysis of 1-step and 9-step
forecasting demonstrates superior precision in
decomposition-based approaches over non-
decomposition forecasting. This evidence

confirms that preprocessing raw data through
HOA-VMD decomposition enhances model
learning capacity, thereby improving predictive
performance. Specifically, HOA-VMD-BiLSTM
outperforms HOA-VMD-LSTM, indicating
BiLSTM’s superior predictive capability in this
research scenario. Furthermore, the
implementation of dynamic weighting
mechanisms enhanced predictive accuracy
compared to fixed-weight configurations.
For 5-step forecasting, while HOA-VMD-
BiLSTM emerges as the optimal model, our
proposed methodology achieves second-best
performance with closely comparable results.
The differences in four loss functions among all
models for 1-step forecasting are shown in
Figure 9. The proposed model achieves the
smallest RMSE, MAE, and MAPE values
(closest to zero), while 2R attains the largest
value (closest to 1) compared to other models.
This demonstrates the proposed model’s
accuracy and effectiveness in forecasting
China’s Consumer Price Index.

Table 3. Parameters of the Proposed Model
Window

size Epochs Batch
size

Neuron number
Hidden layer 1 Hidden layer 2 Hidden layer 3 Dense layer

BiLSTM 48 100 32 128 64 None 64
MLP 48 100 32 128 64 32 None

Table 4. Four Loss Function Results for Each Model

Model
1-step 5-step 9-step

2R RMSE MAE MAPE 2R RMSE MAE MAPE 2R RMSE MAE MAPE
MLP 0.8797 0.5683 0.4899 0.37% 0.7105 0.8563 0.7237 0.55% 0.6785 0.8535 0.7392 0.56%

BiLSTM 0.8455 0.7533 0.7078 0.54% 0.7203 1.0065 0.8052 0.62% 0.6382 1.1492 0.9098 0.70%
HV-B 0.9806 0.2284 0.2137 0.16% 0.9813 0.2175 0.1719 0.13% 0.9054 0.4629 0.3870 0.29%
HV-L 0.9449 0.3846 0.3467 0.26% 0.9227 0.4426 0.3701 0.28% 0.8303 0.6201 0.5220 0.40%

HV-D(M-L) 0.9887 0.1742 0.1440 0.11% 0.9638 0.3028 0.2539 0.19% 0.9384 0.3735 0.3162 0.24%
HV-F(M-B) 0.9673 0.2964 0.2503 0.19% 0.9260 0.4329 0.3654 0.28% 0.8698 0.5431 0.4505 0.345
HV-D(M-B) 0.9964 0.0979 0.0838 0.06% 0.9776 0.2379 0.1922 0.15% 0.9411 0.3653 0.2878 0.22%

Note: boldface indicates optimal values and underlined indicates suboptimal values.

Figure 9. Comparison of Four Loss
Function for Each Model in 1-step Prediction
3.4.2 Diebold-Mariano test
This study employs the Diebold-Mariano test to
demonstrate predictive capability differences

between HOA-VMD-MLP-BiLSTM (Dynamic
weight) and comparative models. The test’s core
principle examines whether the mean value of
loss differential series between prediction errors
significantly deviates from zero, thereby
determining the statistical significance of
predictive performance variations across models.
Assuming model A and model B generate
forecasts form time series   1

T
t t
y


, denote as

 , 1
ˆ T
A t t
y


and  , 1

ˆ T
B t t
y


, with corresponding forecast

errors , ,ˆA t t A te y y  and , ,ˆB t t B te y y  . The
loss differential sequence is defined as

, ,( ) ( )t A t B td L e L e  , where ( )L  denote the loss
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function (e.g., Mean Squared Error (MSE) or
Mean Absolute Percentage Error (MAPE)). The
Diebold-Mariano test establishes the null
hypothesis  0 : Ε 0tH d  that no significant
difference exists in predictive accuracy between
the two models. The test statistic is formulated
as:

ˆ /d

dDM
S T


(19)

where
1

1 T

t
t

d d
T 

 
denote the sample mean, ˆ

dS

denote the sample variance estimator of the
differential sequence. Under weak stationarity
and appropriate moment conditions, the DM
statistic asymptotically follows the standard
normal distribution. The null hypothesis is
rejected when /2αDM z .
The Diebold-Mariano (DM) test results between
the proposed model and comparative models for
1-, 5-, and 9-step forecasting are shown in table
5. All models reject the null hypothesis at the
1% significance level across different predicted
steps, which statistically validates the accuracy
and reliability of the proposed methodology.
3.4.3 Comparative analysis of multi-step
predictions in the proposed model
Furthermore, the comparative analysis of the
multi-step prediction performance for the HOA-
VMD-MLP-BiLSTM model with dynamic
weighting across 1-, 5-, and 9-step forecasting
are shown in Figure 10. As quantitatively
demonstrated in Table 1, the proposed model
achieves RMSE values of 0.0979, 0.2379, and

0.3653 for 1-, 5-, and 9-step predictions,
respectively; MAE values of 0.0838, 0.1922, and
0.2878, respectively; MAPE values of 0.06%,
0.15%, and 0.22%, respectively; and R2 values
of 0.9964, 0.9776, and 0.9411, respectively.
Notably, the 1-step prediction exhibits optimal
performance, with error indices (RMSE, MAE,
MAPE) approaching zero and 2R values closer
to 1. At the same time, through visual
comparison of multi-step prediction results, it
can also be observed that the proposed model’s
1-step predictions are overall closer to the true
values.
3.4.4 1-step prediction comparison across all
models
Finally, to visually demonstrate the predictive
performance of each model, we plot the 1-step
prediction results of all models as shown in
figure 11. The horizontal axis represents the
sample size of the test set, and the blue line with
circular markers denotes the predictions of the
HOA-VMD-MLP-BiLSTM (Dynamic weight)
model. The figure reveals that the results of our
proposed model more closely match the original
data. However, the predictions from other
models exhibit larger deviations from the
original data. Therefore, we conclude that the
proposed model demonstrates superior
predictive performance.
This study validates the superiority of the HOA-
VMD-MLP-BiLSTM (Dynamic weight) model
through four loss functions, Diebold-Mariano
tests, and multi-step prediction results, with its
advantage being obvious in one-step predictions.

Table 5. DM Test Results of HOA-VMD-MLP-BiLSTM (Dynamic Weight) and Other Models
1-step 5-step 9-step

DM1 DM2 DM3 DM1 DM2 DM3 DM1 DM2 DM3

MLP 6.52e-20 1.43e-35 1.57e-35 7.93e-22 1.97e-39 1.42e-38 1.44e-14 6.88e-29 1.82e-28
BiLSTM 5.03e-20 1.67e-30 1.88e-30 2.83e-19 1.07e-30 4.52e-30 2.87e-18 6.33e-28 8.13e-28

HV-B 7.33e-17 2.06e-22 2.14e-22 1.23e-16 2.10e-25 1.80e-25 1.84e-13 8.01e-18 1.02e-17
HV-F(M-B) 1.55e-08 2.68e-09 2.65e-09 5.03e-07 1.89e-07 1.37e-07 5.27e-07 1.44e-06 1.19e-06

HV-L 6.57e-20 1.07e-30 1.08e-30 5.98e-17 4.53e-33 6.66e-33 2.42e-18 2.10e-32 1.00e-31
HV-D(M-L) 2.56e-14 3.98e-19 4.12e-19 2.02e-14 1.93e-20 2.19e-19 1.58e-13 8.81e-16 3.40e-15

Note: the DM test statistics of MSE, MAPE and MAE loss functions are expressed by DM1, DM2

and DM3 respectively. Rejection of null hypothesis at the significance levels of 10%, 5%, 1% is
indicated by , , and , respectively.

Figure 10. Multi-step Prediction Results of
the Proposed Model

Figure 11. 1-step Prediction Results for Each
Model
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4. Conclusion
Accurate prediction of the Consumer Price Index
is a critical tool for governments to anticipate
inflation, for policymakers to implement rational
economic regulations, and for investors to
evaluate market stability. To provide decision-
makers with accurate and robust support,
therefore, we propose a robust hybrid model, the
HOAVMD-MLP-BiLSTM (Dynamic weight)
model, for forecasting China’s Consumer Price
Index. This model utilizes a novel and efficient
optimization algorithm to determine the mode
number of Variational Mode Decomposition
(VMD), feeds the decomposed mode functions
and original series into BiLSTM and MLP
models respectively to obtain predictions, and
dynamically integrates the strengths of both
models through adaptive weighting. Let the
global trends learned by the MLP guide the
detailed features captured by the BiLSTM,
making the model achieve optimal predictive
performance. Based on the research findings, the
HOA-VMD-MLP-BiLSTM (Dynamic weight)
model consistently outperforms other models in
the following aspects: its RMSE, MAE, and
MAPE values are closest to 0, and 2R values are
closest to 1 in both 1-step and 9-step predictions.
For 5-step predictions, these metrics rank
second-best, with minimal gaps from the optimal
values. Moreover, it maintains high accuracy
even in 9-step predictions, achieving the
objective of developing models with high
precision and robustness. Furthermore, Diebold-
Mariano tests confirm the model’s statistically
significant superiority across all models,
demonstrating its reliability as an economic
forecasting tool.
In conclusion, this study holds vital significance
for economic forecasting for governments,
enterprises, and individuals. Firstly, the multi-
step prediction model proposed herein enables
comprehensive analysis of data to reveal long-
term trends, providing decision-makers with
reliable information to support economic
regulation, business expansion and contraction
strategies, and reduction of subjective
misjudgments. Furthermore, the HOA-VMD-
MLP-BiLSTM (Dynamic weight) model is
applicable not only to Consumer Price Index
(CPI) forecasting but also to other datasets with
similar patterns, particularly CPI data from The
Belt and Road countries, which share analogous
characteristics. Finally, despite current global

economic stability, persistent uncertainties
necessitate accurate predictions to optimize
resource allocation. Meanwhile, this research has
limitations: the model exclusively utilizes raw
CPI data without incorporating related economic
indicators (e.g., inventory, international crude oil
prices, interest rates, Producer Price Index) that
could enhance predictive accuracy. To address
this, future work will blend multiple time series
data sources.
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