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Abstract: Aiming at the high-dimensional and
strongly time-dependent characteristics of
network traffic data, this paper proposes a
multimodal feature fusion model based on
Temporal Convolutional Network (TCN) and
Transformer architectures. An optimal 10-
dimensional feature subset is constructed by
integrating a Random Forest model with
Recursive Feature Elimination (RFE). A
dual-channel feature extraction architecture
is designed: the TCN module captures local
temporal patterns using dilated causal
convolutions with residual connections, while
the Transformer module models global
dependencies through a self-attention
mechanism. Furthermore, the model
structure is optimized with residual
connections to enhance information flow. the
trade-off between complexity and efficiency is
balanced by adjusting the TCN channel
parameters ([64, 128]) and reducing the
Transformer dimension (d_model = 8).
Experimental results demonstrate that the
proposed model achieves a detection accuracy
of 98.7% on the UNSW-NB15 dataset,
outperforming conventional single-model
approaches by approximately 9.8%. This
study provides a novel technical pathway for
intrusion detection in complex network
environments.

Keywords: Network Intrusion Detection;
Feature Selection; Temporal Convolutional
Network; Self-Attention Mechanism;
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1. Introduction
With the commercialization of fifth-generation
mobile communication technology (5G) and the
explosive growth of Internet of Things (IoT)
devices—Statista reports that the number of
connected devices worldwide reached 29.4
billion in 2023—the network attack surface is
expanding exponentially. According to IBM’s

2023 Cost of a Data Breach Report, the average
global loss per data breach incident reached
USD 4.45 million, representing a 15% increase
compared with 2020. However, traditional
network security defense systems face three
major challenges. First, the increasing
intelligence of attack methods: Advanced
Persistent Threats (APTs) adopt multi-stage
penetration strategies, with an average dwell
time of 56 days, as reported in the 2022 FireEye
Annual Report. Traditional rule-based detection
methods struggle to identify low-frequency and
highly covert attacks. Second, the complexity of
traffic data in modern network environments
poses significant challenges: such data exhibit
high dimensionality (e. g., the UNSW-NB15
dataset contains 49 features), multimodality
(including heterogeneous information such as
protocol types and payload bytes), and strong
temporal correlations (e. g., TCP session state
transitions). Against this backdrop, deep
learning–based intrusion detection technologies
have become a focal point of interest in both
academic research and industrial applications.
Compared with traditional methods, deep
learning–based approaches offer three major
advantages. First, automatic feature learning:
neural networks can automatically extract deep
traffic features, significantly reducing the cost of
manual rule design. Second, context awareness:
temporal modeling enables the capture of the
staged and sequential characteristics of attack
chains. Third, dynamic adaptability: online or
incremental learning mechanisms allow models
to adapt to emerging and previously unseen
attack patterns.
Feature selection is a key step in high-
dimensional data processing and can be broadly
categorized into the following methods:
1) Filter methods: These approaches assess
feature importance using statistical measures (e.
g., mutual information and the chi-square test)
and select features with high relevance for model
construction. While computationally efficient,
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filter methods are independent of the learning
algorithm, which limits their ability to adapt
feature selection to different models [1].
2) Embedded methods: These approaches
perform feature selection during model training,
for example, using L1 regularization (LASSO)
or feature importance scores from Random
Forests. However, they can be prone to local
optima, which may lead to overfitting and
reduced generalization performance [2].
3) Wrapper methods: These approaches
iteratively optimize the feature subset by
combining forward or backward search with
classifier performance evaluation, albeit at a
high computational cost [3]. Recent research
trends indicate that hybrid feature selection
strategies are increasingly becoming mainstream.
For instance, Al-Yaseen proposed approach
employs a differential evaluation algorithm to
select the useful features whilst the extreme
learning machine classifier is applied after
feature selection to evaluate the selected features.
[4].
Current mainstream intrusion detection models
can be broadly classified into three categories.
1) Traditional machine learning models:
Support Vector Machines (SVM): SVMs handle
nonlinear data through kernel function mapping;
however, they are difficult to adapt to dynamic
network environments [5].
Random Forests (RF): RFs leverage ensemble
learning to enhance generalization, but they
provide limited modeling of temporal features
[6].
2) Basic deep learning models:
Convolutional Neural Networks (CNN): CNNs
extract spatial features through local receptive
fields but have limited ability to capture long-
range dependencies [7].
Recurrent Neural Networks (RNN): RNNs
process sequential data using gating mechanisms,
but they are prone to gradient vanishing,
resulting in detection delays exceeding 80ms [8]
[9].
GRU-based hybrid models: By combining CNN
and GRU architectures, these models leverage
CNNs for effective feature extraction and GRUs
for temporal modeling, thereby enhancing the
predictive performance of the network [10].
3) Attention mechanism models:
Transformers: Transformers capture global
dependencies through self-attention; however,
they exhibit limited sensitivity to local features
[11]. To address this, a novel Transformer model

replaces the traditional multilayer perceptron
(MLP) feedforward layer with a KAN layer.
Unlike the fixed-weight structure of MLPs, the
KAN layer employs learnable univariate
function components, resulting in a more
compact representation. Consequently, KAN can
achieve performance comparable to larger MLPs
while using fewer trainable parameters [12].
Graph Neural Networks (GNN): GNNs model
network topological relationships and
demonstrate excellent performance in detecting
Advanced Persistent Threats (APTs); however,
they rely on prior knowledge to construct graph
structures [13].
Attention-based models: These models combine
Bidirectional Gated Recurrent Units (BiGRU)
with multi-head attention to extract both
temporal features and global information. They
can be integrated with architectures such as
ResNeXt and typically use a SoftMax layer for
classification [14].
Existing research continues to face the following
key bottlenecks:
Disconnection between feature selection and
model training: In traditional approaches, feature
selection is performed independently of model
training, often resulting in suboptimal feature
subsets.
Limited model architecture diversity: Single-
mode architectures struggle to balance the
extraction of local details with the capture of
global contextual information.

2. Method and Model

2.1 Data Preprocessing
The UNSW-NB15 dataset was developed by the
Cyber Security Centre at the University of New
South Wales, Canberra, Australia, to provide a
comprehensive testing platform for network
intrusion detection systems. It contains a mixture
of modern normal network activities and
synthetic contemporary attack behaviors,
generated using the IXIA PerfectStorm tool in a
controlled network laboratory environment. the
dataset comprises 175, 341 records and 49
features, including attributes such as source IP,
destination IP, and transport protocol. It
encompasses nine types of attacks: Fuzzer,
Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode, and Worms. the
dataset is divided into a training set and a testing
set, containing 175, 341 and 82, 332 records,
respectively. the following preprocessing steps
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are applied:
1) Missing value processing: the isnull function
in pandas was used to check for missing values
in both categorical and numerical features. Since
no missing values were found, no imputation
was required.
2) Outlier correction: Box plots were used to
identify outliers in the dataset. Given the large
number of records, outliers were removed
directly to ensure data quality.
3) Categorical encoding: Categorical features
such as proto (protocol type), state
(communication state), and attack_cat (attack
category) were encoded, as neural networks
cannot process categorical data directly.
The proto feature contains 133 categories, but
the types tcp, udp, and unas are the most
frequent, accounting for over 90% of the data.
Using one-hot encoding would result in very
high dimensionality, leading to data sparsity and
potentially degrading model training quality.
Therefore, frequency encoding is employed:
each category is assigned a value based on its
occurrence frequency, with more frequent
categories receiving higher values. This can be
implemented using the value_counts function in
pandas combined with a dictionary mapping. the
same approach is applied to other categorical
features, such as state and attack_cat, effectively
mitigating the negative impact of dimensionality
explosion on model training.
4) Normalization: the dataset’s numerical
features have different units and scales. For
example, the dur (duration) feature has values
around 0.1213, while sload (resource load)
contains much larger values, such as 14, 158. To
standardize the feature scales, Z-score
normalization is applied to all numerical features:

(1)

Where is the mean of the feature and is its
standard deviation.

2.2 Design of the TCN-Transformer Hybrid
Model
2.2.1 Overall Model Architecture
This study proposes a dual-branch parallel TCN-
Transformer hybrid model, designed to fully
leverage the strengths of both TCN and
Transformer architectures. the model enables
comprehensive extraction of local temporal
dependencies and global contextual relationships
in time series data. the overall network
architecture is illustrated in Figure 1. the model

consists of the following core components:
The TCN branch is responsible for extracting
local temporal features from time series data. It
expands the receptive field by stacking dilated
convolutional layers and employs residual
connections to mitigate the gradient vanishing
problem in deep networks. This design enables
the model to effectively capture both short-term
and long-term local temporal dependencies.
The Transformer branch is designed to capture
global contextual relationships in time series
data. Positional encoding is incorporated to
provide information about the sequence order.
Multi-head self-attention is employed to model
long-range dependencies among sequence
elements, while a feedforward neural network
further enhances the model’s capacity for
nonlinear representation.

Figure 1. Network Architecture Diagram
The cross-modal fusion module implements a
dynamic gating mechanism to align and
integrate the output features from the TCN and
Transformer branches. It first computes a
similarity matrix between the features of the two
branches, then generates dynamic weights
through a fully connected layer, and finally
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performs a weighted fusion of the branch
features. This approach allows the model to
adaptively adjust the contribution of each branch
according to the characteristics of the input data,
resulting in a more discriminative fused feature
representation.
This dual-branch parallel architecture allows the
model to simultaneously capture both local and
global features of time series data within a single
framework, providing richer and more
informative representations for subsequent
classification tasks.
2.2.2 Design of the TCN Branch
The detailed design of the TCN branch is
illustrated in Figure 2.

Figure 2. TCN Branch
As shown, the TCN branch mainly comprises
dilated convolutional layers, residual
connections, standard convolutional layers, and a
global pooling layer.
The TCN branch employs dilated convolutions
to expand the network’s receptive field, enabling
the capture of long-range temporal dependencies.
In the -th layer, the dilation factor is set
as , resulting in an exponentially
increasing receptive field. Assuming a
convolution kernel size of , the receptive
field of the -th layer can be calculated as:

(2)
By stacking three layers, the total receptive field
of the TCN branch reaches 15, allowing the
model to effectively capture temporal
correlations between distant positions in the
sequence.
To mitigate the vanishing gradient problem in
deep networks, the TCN branch incorporates
residual connections after each dilated
convolutional layer. These connections employ a

1×1 convolution to match the dimensionality of
the input features with the output features of the
convolutional layer. Given an input feature, and
the weight and bias parameters of the 1×1
convolution and , the output of the
residual connection can be expressed as:

(3)
This design not only facilitates gradient
propagation but also simplifies model
optimization, thereby enhancing both training
efficiency and overall performance.
The hierarchical structure of the TCN branch
is as follows:
1) This layer accepts a 1×10-dimensional
feature vector, where 1 denotes the number of
channels and 10 represents the length of the
feature sequence.
2) Convolutional Layer 1: This layer contains
64 channels and employs a 3×1 convolutional
kernel to process the input features,
producing an output of size 64×10. It extracts
64 distinct dimensions of local temporal
features.
3) Convolutional Layer 2: Building on
Convolutional Layer 1, this layer increases
the number of channels to 128. Using a 3×1
convolutional kernel, it generates an output of
size 128×10, further enhancing the model’s
capacity to learn complex local temporal
features.
4) Global Pooling Layer: Global average
pooling is applied to the output of
Convolutional Layer 2, compressing the
feature sequence of each channel into a single
value. the resulting output is a 128-
dimensional feature vector, which
encapsulates the local temporal features of
the time series and serves as input for the
subsequent fusion module.
2.2.3 Transformer Branch Design
The network architecture of the Transformer
branch is illustrated in Figure 3.
As depicted, the branch mainly consists of multi-
head attention, residual connections, and
feedforward networks.
Since the Transformer architecture is inherently
insensitive to the order of sequence elements,
positional encoding is introduced to provide
information about the relative or absolute
positions of each element in the sequence. In this
study, a learnable positional encoding matrix

is employed, where the encoding for
each position is generated using sine and cosine
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functions. Specifically, the positional encoding
is calculated as follows:

(4)

(5)

Here, represents the position index, and
denotes the feature dimension index. This
positional encoding approach allows the
model to adaptively learn features specific to
each position and effectively capture both
periodic and trending patterns within the
sequence.

Figure 3. Transformer Branch
The core component of the Transformer
branch is the multi-head self-attention
mechanism, which allows the model to
simultaneously capture dependencies between
different positions in the sequence. In this
study, a 4-head parallel attention mechanism
is employed. Each head independently applies
linear transformations to the query matrix ,
key matrix , and value matrix , and then
computes the attention scores. the attention
weight matrix is calculated as follows:

(6)

Here, denotes the dimensionality of the
key vectors, and represents the causal
mask matrix, which prevents the model from

accessing future information when computing
attention scores. the causal mask ensures the
model maintains causality during sequential
data processing, allowing each position to
attend only to its preceding positions.
Following the multi-head self-attention layer,
the Transformer branch incorporates a
feedforward neural network for further
feature processing and transformation. This
network consists of two fully connected
layers: the first layer expands the feature
dimension from 8 to 256, while the second
layer reduces it back to 8. the GeLU
activation function is applied in the first layer,
defined as , where is
the cumulative distribution function of the
standard normal distribution. Compared with
the traditional ReLU function, GeLU offers
enhanced nonlinear representation and
improved convergence, thereby improving the
model’s learning capability.
2.2.4 Cross-Modal Feature Fusion
The cross-modal fusion module first aligns
the features output by the TCN and
Transformer branches. Since the feature
dimensions of the two branches differ—128
for the TCN branch and 8 for the Transformer
branch—a similarity matrix is computed to
facilitate feature alignment. the similarity
matrix is calculated as follows:

(7)

Here, represents the -th dimension of
the feature output from the TCN branch, and

represents the -th dimension of the
feature output from the Transformer branch.
the similarity matrix captures the correlations
between features from the two branches and
serves as the basis for the subsequent
generation of dynamic weights.
Based on the similarity matrix , dynamic
weights are generated using a fully
connected layer. Specifically, max pooling
and average pooling are applied to along
the row and column dimensions, producing

and respectively. These pooled

representations are then concatenated and
passed through the fully connected layer. the
dynamic weight α is computed as follows:

(8)

Here, is the weight matrix of the fully
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connected layer, is the bias term, and

denotes the sigmoid activation function,
which constrains the output to the range [0, 1].
the dynamic weight represents the
contribution of the TCN branch features,
while corresponds to the contribution
of the Transformer branch features.
Using the generated dynamic weight the
features from the two branches are fused via a
weighted summation. the weighted fusion is
computed as follows:

(9)
In this manner, the model can dynamically
adjust the contribution of each branch’s
features based on the characteristics of the
input data, thereby fully leveraging the
strengths of both branches and enhancing
classification performance on time series data.
the cross-modal fusion module not only
enables effective integration of features from
different branches but also improves the
model’s adaptability and robustness, allowing
it to better handle complex and variable time
series classification tasks.

2.3 Optimization Strategy and Training
Details
2.3.1 Loss Function Design
This cross-modal fusion module not only
facilitates effective integration of features
from different branches but also enhances the
model’s adaptability and robustness, enabling
it to more effectively handle complex and
variable time series classification tasks.
To address the class imbalance problem,
where normal traffic accounts for 87.34% of
the data, a weighted cross-entropy loss is
employed. This loss function incorporates
class weights to adjust the contribution of
each class during loss computation, thereby
mitigating the impact of class imbalance on
model training. the weighted cross-entropy
loss is defined as follows:

(10)

where, the class weight is calculated as:

(11)

Here, denotes the number of samples in
class , and represents the total number
of samples. This weighting scheme ensures
that the model pays greater attention to

minority classes during training, thereby
improving overall performance.
2.3.2 Regularization Strategy
To prevent overfitting, multiple
regularization strategies were employed:
1) Dropout: In the TCN branch, a dropout
rate of 0.3 was applied to reduce the model’s
reliance on specific features. A higher
dropout rate of 0.4 was used in the fully
connected layers to further enhance
generalization.
2) Weight Decay: Using the AdamW
optimizer, a weight decay coefficient of
λ=10−4 was applied to constrain the L2 norm
of the weights, preventing overfitting owing
to excessively large weight values.
3) Early Stopping: Training is terminated if
the validation accuracy does not improve for
10 consecutive epochs, thereby avoiding
overfitting.
2.3.3 Learning Rate Scheduling
During training, a cosine annealing learning
rate schedule was employed to dynamically
adjust the learning rate. the schedule is
defined as follows:

(12)

where is the initial learning rate, set to
10−3; is the minimum learning rate, set
to 10−5; and denotes the total number of
iterations.
This strategy gradually decreases the learning
rate according to a cosine curve, enabling
finer parameter adjustments in the later stages
of training and thereby improving the model’s
performance.

3. Experimental Results and Analysis

3.1 Model Analysis
In this experiment, the TCN and Transformer
models were combined to predict outcomes on
the UNSW-NB15 dataset. the network is mainly
composed of two branches: the TCN branch,
responsible for extracting temporal features, and
the Transformer branch, which models global
dependencies. the outputs from both branches
are subsequently fused to generate the final
predictions.
Compared with traditional temporal network
architectures, the network in this experiment
employs a dual-branch feature extraction design.
the TCN branch captures local temporal features
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using dilated convolutions, which effectively
expand the receptive field while preserving
causality, enabling the modeling of both short-
term and long-term dependencies in time series
data. the Transformer branch leverages self-
attention to model global features, capturing
dependencies between any positions in the
sequence and compensating for the limitations of
traditional temporal networks in handling long-
range dependencies.
In terms of network design, the TCN block in
the TCN branch employs a standard residual
structure. By incorporating residual connections
after the convolutional layers, the gradient
vanishing problem during training is mitigated,
facilitating efficient information propagation. the
Transformer branch utilizes an implicit
LayerNorm residual design, further enhancing
the training stability of the model.
For parameter tuning, the channel sizes in the
TCN branch are progressively increased from 64
to 128. This design allows the network to
gradually extract features from low-level to
high-level representations, enhancing its ability
to capture complex patterns. In the Transformer
branch, a grid search was conducted to
determine the optimal model dimension based
on the final training loss of the fused network.
Ultimately, a smaller model dimension (d_model
= 8) was adopted, effectively reducing
computational costs and improving both training
and inference efficiency.

Figure 4. Feature Selection Flowchart
Table 1. Random Forest Parameters

Parameter
name

Assigned
value

Tuning basis

n_estimat
ors

200 When n_estimators > 200, the Out-of-
Bag (OoB) error tends to stabilize.

max_dept
h

15 The maximum tree depth was
optimized using 5-fold cross-

validation, with candidate values
{None, 10, 15, 20, 25}. A value of 15
was selected, balancing the risk of
overfitting while enabling the model to
capture complex nonlinear
relationships.

min_samp
les_split

10 For the UNSW-NB15 dataset, setting
this parameter to 10 effectively
prevents over-partitioning of minority
attack samples.

min_samp
les_leaf

5 Specifies the minimum number of
samples required per leaf node. Used
in conjunction with
min_samples_split, it helps control
model complexity and prevents the
creation of overly fine decision
boundaries on noisy features.

class_wei
ght

balanced The balanced subsample strategy
dynamically adjusts class weights
during the bootstrap sampling of each
tree, significantly enhancing
sensitivity to minority class attacks.

Figure 5. Feature Selection Importance
The Random Forest model is based on the
Bagging ensemble framework, with feature
importance measured by aggregating the
statistical consensus across multiple decision
trees. This property makes it particularly
effective for handling class imbalance and the
high-noise characteristics of the UNSW-NB15
dataset. During model construction and feature
analysis, the dataset is first split into training and
test sets at an 80:20 ratio. the random forest
model is then trained on the training set to learn
the mapping between features and labels. To
address sample imbalance, the class weight
parameter is set to “balanced, ” enabling the
model to automatically compute weights based
on the frequency of each class in the training
data when selecting features for splitting. This
approach assigns higher weights to minority
classes and lower weights to majority classes,
thereby reducing training bias. the specific
parameter settings are listed in Table 1. After
training the Random Forest model, Recursive
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Feature Elimination (RFE) is employed for
feature selection. the RFE object is configured to
select the 10 most important features, using the
trained Random Forest classifier as the base
model. Feature selection is performed on the
training set to identify the most valuable subset
for the classification task. the importance of the
selected features is visualized in a bar chart, as
shown in Figure 5, providing a crucial basis for
model optimization and feature engineering. the
selected features are: attack category, time
interval from source to destination packet, flow
count within the same state and TTL, download
size, average packet size at the destination,
upload size, TTL at the destination, data rate,
source bytes, and historical flow count between
the same source and destination.
To evaluate the impact of feature selection on
the experimental results, the same base dataset
was used. the neural network model was trained
separately using the selected features obtained
from feature selection and the original dataset
without feature selection. A bar chart comparing
the accuracy under these two scenarios is
presented in Figure 6:

Figure 6. Feature Selection Comparison
As shown in the figure, the neural network
model achieves higher accuracy on both the
training and test sets after feature selection
compared to using the full set of features. This
improvement is attributed to the high
dimensionality of the dataset; including too
many irrelevant or redundant features makes it
more difficult for the model to learn the true
underlying patterns, leading to suboptimal
training performance.

3.2 Model Training and Results
Prior to training, the number of epochs was
specified. During training, the reduction in loss
was monitored and visualized for different
models on both the training and test sets. the

results are shown in Figure 7.

Figure 7. Network Loss Reduction Plot
In this experiment, training was conducted for a
total of 100 epochs. the loss of the TCN-
Transformer model decreased rapidly, reaching
approximately 0.01 on the training set by the
45th epoch, down from 0.06, while the test set
loss also declined quickly. These results
demonstrate the effectiveness and superiority of
the proposed model.
This experiment involves a classification task,
for which a classification neural network model
was constructed. During training, the
classification accuracy on the test set was
monitored and visualized, with the results shown
in Figure 8. As illustrated, the fusion model
reached a prediction accuracy close to 1 by the
20th epoch. This demonstrates that the TCN-
Transformer fusion model can achieve high
prediction accuracy on the test set, confirming
its effectiveness for intrusion detection on the
dataset.

Figure 8. Prediction Accuracy
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3.3 Results Analysis
As discussed in Sections 2.2 and 2.3, the fusion
model proposed in this study rapidly reached
minimal loss during training on the UNSW-
NB15 intrusion dataset and achieved high and
stable prediction accuracy on the test set.
The confusion matrix is an essential tool for
evaluating the performance of classification
models, as it provides an intuitive visualization
of the relationship between the predicted and
true values across different classes. By analyzing
the confusion matrix, the strengths and
weaknesses of the model can be identified,
guiding subsequent optimization efforts. the
visualization results are presented in Figure 9.

Figure 9. Confusion Matrix
As shown, the fusion model demonstrates
excellent performance on the test set, achieving
high recognition accuracy for both positive and
negative classes.

Figure 10. Feature Heatmap
During model training, a heatmap of feature
correlations was generated. Analyzing these
correlations provides insights into the internal
structure of the dataset and the relationships
among features. the visualization is shown in

Figure 10. In the figure, colors closer to red
indicate stronger positive correlations between
features, while colors closer to dark blue indicate
stronger negative correlations. Notably, the
feature “sbytes” exhibits low correlation with
other features, suggesting that it may contain
unique information and could be prioritized in
subsequent feature selection. the correlation
coefficient between “rate” and “sttl” is 0.41,
indicating a moderate positive correlation.
Additionally, the correlation coefficient between
“sttl” and the “label” is 0.69, suggesting that
“sttl” may have significant predictive value for
attack detection.

3.4 Model Comparison
To further evaluate the performance of the
fusion model, comparative experiments were
conducted in which the TCN and Transformer
models were used individually to predict the test
set. the prediction results are presented in Table
2.

Table 2. Model Prediction Comparison
Model Accuracy F1 Score Precision
TCN-
Transformer

0.987 0.979 0.972

TCN 0.912 0.903 0.906
Transformer 0.899 0.863 0.901
TCN-CNN 0.968 0.956 0.955
LSTM 0.923 0.933 0.919
CNN 0.898 0.867 0.916
LSTM-
Transformer

0.977 0.961 0.962

Figure 11. ROC Curve
As shown in Table 2, the fusion model
outperformed the baseline models, achieving the
highest prediction accuracy and F1 score. To
further evaluate model performance across
different classification thresholds and reduce the
impact of the class imbalance in the dataset, the
relationship between the true positive rate (TPR)
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and false positive rate (FPR) was analyzed using
AUC curves. the visualization results are
presented in Figure 11 and summarized in Table
3.
Table 3. Comparison of AUC Values for ROC

Curves
Model AUC Values

TCN-Transformer 0.942
TCN 0.938

Transformer 0.922
TCN-CNN 0.939
LSTM 0.850
CNN 0.920

LSTM-Transformer 0.919
From Figure 11 and Table 3, it can be observed
that the TCN-Transformer curve is the steepest,
quickly rising toward the upper-left corner. This
indicates that the model achieves a high true
positive rate while maintaining a low false
positive rate, demonstrating strong recognition
of positive samples and a low likelihood of
misclassifying negative samples. In contrast, the
LSTM curve closely follows the diagonal,
approximating random guessing and reflecting
poor predictive performance.
The reasons for these results can be explained as
follows: TCNs excels at capturing local features
in sequences, whereas Transformers are
effective at extracting global dependencies. By
fusing the two, the TCN-Transformer model
simultaneously leverages both local and global
features within a single framework. Local
features provide detailed information that helps
identify subtle patterns, while global features
allow the model to capture the overall trends and
structure of the sequence. This complementary
combination enhances the model’s
representational power for complex sequence
data, enabling more comprehensive
characterization and resulting in superior
predictive performance compared with models
that rely solely on local or global features.
Furthermore, TCN and Transformer differ in
both network structure and feature extraction
methods, resulting in distinct feature hierarchies.
the fusion model integrates these two levels of
features, producing a richer and more
discriminative representation. This approach is
akin to multi-scale feature extraction, allowing
the model to analyze data from multiple
perspectives, improving its adaptability to data
of varying complexity and types, and thereby
enhancing both generalization performance and
prediction accuracy.

3.5. Model Generalization

Figure 12. IoT-SDN Dataset Metrics
The IoT-SDN IDS Dataset is a comprehensive
dataset specifically designed for research on
intrusion detection systems (IDS) in Internet of
Things (IoT) and Software-Defined Networking
(SDN) environments. Its primary purpose is to
provide reliable data for evaluating and training
AI- or machine learning-based security
applications, particularly for detecting IoT
network attacks within SDN architectures. To
minimize the influence of model architecture on
the data, the network structure was kept
unchanged when training with dataset. csv, with
only the input data dimensions adjusted for
retraining. the test set was then used to evaluate
the performance of the fusion model on new data.
As shown in Figure 12, the proposed fusion
model achieves superior prediction performance
on the IoT-SDN dataset, further validating its
effectiveness and superiority.

4. Experiment Results and Analysis

4.1 Experiment Configuration
The hardware specifications are summarized in
Table 4. the system is equipped with an NVIDIA
RTX A6000 GPU (48 GB GDDR6 VRAM),
paired with an Intel Xeon Gold 6348 CPU (32
cores, 2.6 GHz), 512GB DDR4 memory, and
PCIe 4.0 NVMe SSD, making it well-suited for
high-load tasks such as deep learning and
graphics rendering. the operating system is
Ubuntu 22.04 LTS, with PyTorch v2.0. 1 and
CUDA v12.2.

Table 4. Hardware configuration
SpecificationCPU GPU
Model Intel Xeon Gold

6348
NVIDIA® RTX
A6000

Frequency 2.6 GHz 1.41 GHz
Cores 32 cores 10752 CUDA

cores
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Cache 1.25 MB L2/core, 42
MB L3

6 MB L2

Memory 512 GB DDR4 48 GB GDDR6
Bandwidth 204.8 GB/s 768 GB/s

4.2 Experiment Conclusion
This study proposes an innovative TCN-
Transformer hybrid model specifically designed
to address the challenges of complex network
traffic classification. the model effectively
combines the TCN’s strength in local temporal
feature extraction with the Transformer ’ s
capability for modeling global dependencies.
Through a carefully designed feature fusion
mechanism, it enables comprehensive capture of
multi-dimensional features in network traffic
data.
The experimental results demonstrate the
significant superiority of the hybrid model over
single-model architectures, achieving accuracies
of 0.987 on the validation set and 0.959 on the
test set, substantially outperforming baseline
models such as standalone TCN and
Transformer. This performance is primarily
attributed to the model’ s effective integration
of local and global features, as well as its ability
to mitigate class imbalance. Furthermore, the use
of regularization techniques—including Dropout
and weight decay — combined with early
stopping and learning rate scheduling, enhances
the model ’ s generalization and stability,
ensuring reliable and accurate classification
across diverse network traffic scenarios.
Moreover, the proposed fusion model has
relatively low hardware requirements, making it
compatible with most embedded devices.
Training on both the UNSW-NB15 and IoT-
SDN intrusion detection datasets takes less than
120 minutes, while inference for a single data
sample requires under 1 second, demonstrating
the model’s broad applicability. This study not
only provides an efficient solution for network
traffic classification but also presents a valuable
approach for integrating different neural network
architectures to tackle complex data challenges.
the findings have significant implications for
advancing network traffic analysis technologies.
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