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Abstract:Aiming at the problem of low
grasping accuracy and insufficient robustness
of industrial robots in complex scenes, a
visual and force perception collaborative
perception and decision-making mechanism
is proposed. By integrating the hardware of
"binocular stereo vision+structured light 3D
camera" and six axis force sensor, a
multimodal feature fusion network based on
attention mechanism (AMFF Net) is
constructed to achieve deep data fusion;
Design a reinforcement learning grasping
point decision model and a force position
hybrid dual closed-loop control strategy to
form a "perception decision execution"
closed-loop system. The verification results in
three typical scenarios of automobile
manufacturing, 3C electronic assembly, and
logistics sorting show that this mechanism
can control the grasping positioning error
within ± 0.3mm, and improve the success rate
of grasping in complex working conditions to
over 95%, meeting the high-precision and
high robustness requirements of flexible
production.
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1. Introduction

1.1 Research Background and Significance
In the wave of deep integration between
Industry 4.0 and intelligent manufacturing,
industrial robot grasping tasks have become the
core support link of flexible production systems,
widely used in key fields such as automobile
manufacturing, 3C electronic assembly, logistics
sorting, etc. In the current industrial scene, the
forms of workpieces are becoming increasingly
diverse (from standard boxes to irregular

precision parts), and the working environment
presents dynamic uncertainties (such as
disorderly stacking of workpieces, fluctuating
lighting, and random appearance of obstacles).
Traditional single perception technology is
gradually exposing its shortcomings: although
pure visual perception can achieve target
localization, it is difficult to obtain physical
properties of objects (such as stiffness and
surface friction coefficient) due to factors such
as occlusion, reflection, and weak texture; Pure
force perception can monitor the state of contact
force, but lacks global spatial positioning ability
and cannot independently complete target search
and attitude alignment.
The collaborative perception of vision and force
perception can achieve precise target positioning
and adaptively adjust grasping force and posture
by deeply integrating spatial geometric
information and contact mechanics feedback,
effectively solving grasping difficulties in
complex scenes. This technology can not only
enhance the adaptability of robots to unknown
working conditions, reduce dependence on
manual teaching, but also promote the
transformation of smart factories from "fixed
program execution" to "autonomous
decision-making operation", providing core
technical support for the large-scale
implementation of "black light factories", and
has important theoretical research value and
significant engineering application prospects.

1.2 Research Status and Technical
Bottlenecks
In recent years, visual perception technology has
made rapid progress in the fields of object
detection and pose estimation: algorithms such
as YOLOv8 and Faster R-CNN have achieved
efficient object recognition in complex scenes,
while point cloud processing models such as
PointNet and PointTransformer have improved
the accuracy of 3D pose estimation. However, in
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strong noise and high occlusion industrial
environments, the robustness of visual
algorithms is still insufficient, and pose
estimation errors can easily exceed 1mm,
making it difficult to meet precision grasping
requirements. In terms of force perception, the
sampling frequency and measurement accuracy
of the six axis force/torque sensor continue to
improve, but its data is susceptible to
temperature drift and vibration interference, and
cannot establish a correlation between force
feedback and spatial position when used alone.
The existing collaborative perception research
mostly stays at the simple superposition mode of
"visual positioning+force correction", which has
three core bottlenecks: firstly, the accuracy of
spatiotemporal alignment of multimodal data is
insufficient, and the time delay (usually
10-50ms) of visual and force perception data
and spatial coordinate system deviation lead to
poor fusion effect; Secondly, feature fusion
lacks dynamic adaptation capability and fails to
adjust the weight allocation of the two modes
according to changes in operating conditions;
Thirdly, the closed-loop mechanism of
"perception decision execution" is not sound,
and decision-making algorithms are difficult to
quickly respond to the dynamic changes of
perception data, resulting in a success rate of
less than 90% in unstructured environments. It
is urgent to achieve technological breakthroughs
through architectural innovation and algorithm
optimization.

2. Architecture Design of Visual and Force
Sensing Collaborative Perception System

2.1 Hardware Layer: Multimodal Sensor
Integration Solution
2.1.1 Visual Perception Module
Adopting a composite perception scheme of
"binocular stereo vision+structured light 3D
camera": the binocular camera uses Basler
acA2500-14gm, baseline length 120mm,
resolution 2592 × 1944, calculates disparity map
based on SGMM algorithm, obtains depth
information within the range of 0.5-5m, depth
error ≤ 0.3mm; the structured light camera
adopts Intel RealSense D455, improves the
detail capture ability of weakly textured objects
through Gray code encoding technology, with a
frame rate of 30fps, and the pose estimation
accuracy of different materials such as metal
and plastic workpieces can reach ± 0.1mm. At

the same time, it is equipped with an industrial
grade circular LED light source (wavelength
650nm), which eliminates reflective interference
through brightness adaptive adjustment,
ensuring stable imaging in a wide illumination
range of 0.1lux~10000lux.
2.1.2 Force perception module
Integrate ATI Nano17 six axis force/torque
sensors at the end of the robotic arm (such as
ABB IRB 1200), with a range of ± 17N (force)
and ± 0.85N · m (torque), a sampling frequency
of 1kHz, a measurement accuracy of ± 0.1% FS,
and a resolution of 0.01N (force) and
0.001N · m (torque). To solve the problem of
temperature drift, a polynomial fitting
temperature compensation algorithm is adopted
to control the zero drift within ± 0.05N at an
ambient temperature of -10~60 ℃; Through
FPGA triggered synchronization technology,
microsecond level time alignment of visual and
force sensing data is achieved to ensure
temporal consistency of multi-source data.

2.2 Algorithm Layer: Multi Source Data
Fusion Framework
2.2.1 Spatiotemporal Calibration Techniques
Establish a joint calibration model of "camera
robotic arm force sensor": use Zhang's
calibration method to solve the camera internal
parameters (focal length, principal point
coordinates, distortion coefficient), collect 20
sets of different pose images through a
checkerboard calibration board, and calibrate
the error ≤ 0.2 pixels; Based on Eye in Hand
calibration, the robotic arm was moved to 15
different poses to collect calibration plate
images captured by the camera and joint angle
data of the robotic arm. The least squares
method was used to solve the transformation
matrix between the camera coordinate system
and the end coordinate system of the robotic arm,
ultimately achieving an alignment error of ≤
0.5mm between visual perception and the
robotic arm base coordinate system. For the
force sensor, 5 sets of output data under
different loads were collected through static
loading experiments, and a zero offset
compensation matrix was constructed to
eliminate the influence of installation errors and
initial deviations on the force feedback signal.
2.2.2 Feature Fusion Algorithm
Propose a multimodal feature fusion network
based on attention mechanism (AMFF Net),
which consists of a visual branch, a force
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sensing branch, and an attention fusion layer.
The visual branch uses ResNet50 as the
backbone network to extract 2D texture features
of objects and shape and pose features of 3D
point clouds (with an output dimension of 512
dimensions); The force sensing branch encodes
the temporal data of the force sensor (100
sampling points within a 100ms window)
through a 3-layer 1D convolutional network,
extracting features such as contact force
distribution and stiffness characteristics (output
dimension 256 dimensions); The attention
fusion layer calculates the mutual information
between two modal features and dynamically
assigns weight coefficients (visual weight range
0.3~0.8, force weight range 0.2~0.7) to achieve
adaptive fusion of multi-source features.
Experimental verification shows that in cluttered
stacking scenarios, the object recognition
accuracy of this algorithm reaches 92%, which
is 18% higher than traditional serial fusion
methods, providing more comprehensive
environmental and target representations for
subsequent decision-making.

3. Collaborative decision-making mechanism
and control strategy

3.1 Capture Planning Stage: Intelligent
Decision Model
3.1.1 Optimization algorithm for grasping points
Build a reinforcement learning based grasping
point selection model (GrassRL) to solve the
optimal grasping posture decision-making
problem for objects of different materials and
shapes. The input of the model is the fused
features output by AMFF Net, including
visually extracted object surface normal vectors,
curvature distributions, and contact stiffness pre
estimated by force perception; Using Deep
Q-Network (DQN) as the decision network, a
multi-objective reward function is designed:

R = α Rssuccess + β Rforce + γ Refficiency
where Rssuccess is the grasping success rate,
Rforce is the contact force deviation (difference
from the optimal force threshold), Refficiency is
the grasping time, and α=0.6, β=0.3, and γ=0.1
are the weight coefficients. By conducting
100000 training sessions in a virtual simulation
environment (including 100 typical industrial
workpieces), the model converged and
controlled the gripper positioning error within ±
0.3mm in the grabbing task of new energy

battery pole pieces (thickness 0.1mm, width
50mm), which improved the decision-making
efficiency by 40% compared to traditional
heuristic algorithms (such as geometric center
method) and effectively avoided pole piece
wrinkles or fractures.
3.1.2 Path planning and obstacle avoidance
strategy
Design a fusion path planning algorithm of
dynamic window method (DWA) and artificial
potential field method (APF) to achieve safe and
efficient movement of robotic arms. The global
path planning adopts APF and is based on the
visual system to construct an environmental
point cloud map. The target position is set as the
gravitational source and obstacles as the
repulsive source to generate a collision free
initial path; DWA is used for local path
correction. During the movement of the robotic
arm, the visual system updates the obstacle
position at a frequency of 10Hz, and the force
sensor monitors the contact force in real time.
When a sudden change in force is detected
exceeding the threshold (5N), it is judged as a
potential collision and immediately triggers the
local obstacle avoidance strategy: by adjusting
the joint angular velocity of the robotic arm
(maximum deceleration of 0.5rad/s ²), the local
path within 300ms is re planned to ensure safe
and compliant control at 0.5m/s high-speed
movement. The experiment shows that the
obstacle avoidance response time of this
algorithm is ≤ 50ms, and the obstacle
recognition rate reaches 98%, which is 60%
lower than the collision rate of a single DWA
algorithm.

3.2 Grabbing Execution Stage: Force Position
Hybrid Control
3.2.1 Impedance Control Model
Establish impedance control equations based on
visual target pose to achieve compliant contact
control at the end of the robotic arm. The core of
impedance control is to simulate the mechanical
characteristics of the end effector of a robotic
arm by adjusting the stiffness matrix K,
damping matrix B, and inertia matrix M. The
equation is as follows:

MΔx¨+BΔx˙+KΔx=Fdes ​−Fmeas
where Δx is the end effector position deviation,
Fdes ​ is the expected contact force, and Fmeas is
the measured force of the sensor. Based on the
characteristics of different workpieces, preset
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adaptive stiffness matrices: metal workpiece
K=diag ([100, 100, 80, 50, 50, 30]) N/m, plastic
workpiece K=diag ([80, 80, 60, 40, 40, 20]) N/m,
glass workpiece K=diag ([60, 60, 40, 30, 30, 15])
N/m. When the force sensor detects that the
contact force exceeds the preset threshold (such
as Fz>15N for glass products), the system
automatically switches to force control mode,
and adjusts the gripper driving force through a
proportional integral (PI) controller to ensure
that the contact force is stable within a
fluctuation range of ± 2N and avoid damage to
the workpiece.
3.2.2 Closed loop feedback regulation
Design a dual closed-loop control architecture to
achieve dual guarantees of pose accuracy and
force stability: the outer loop is a visual pose
loop, using a PID controller (parameters Kp=0.8,
Ki=0.2, Kd=0.1), based on real-time acquisition
of pose deviations (position deviation ≤ 0.5mm,
posture deviation ≤ 0.3 °) between the end
effector and the target object by the visual
system, and outputting joint position correction
quantities; The inner loop is a force feedback
loop, using sliding mode control algorithm
(SMC), designing a switching function s=e ·+λ
e (λ=5 is the adjustment coefficient), and
adjusting the joint torque in real time through
the control law u=- Ks sign (s) (Ks=10 is the
sliding mode gain), quickly compensating for
force deviations caused by changes in workpiece
stiffness and environmental disturbances. In 3C
electronic precision assembly tasks (such as
mobile phone camera module insertion), this
dual closed-loop control architecture increases
the success rate of insertion from 85% to 97%,
with a position repetition positioning accuracy
of ± 0.05mm, meeting micron level assembly
requirements.

4. Typical Industrial Scenario Application
Verification

4.1 Automotive Manufacturing: Flexible
Grasping of Engine Cylinder Blocks
In a new energy vehicle engine production line,
the collaborative perception and
decision-making system proposed in this paper
is applied to meet the flexible grasping
requirements of aluminum alloy cylinder bodies
(size 500mm × 300mm × 200mm, weight 8 ±
0.5kg). The visual system uses ICP point cloud
registration technology to achieve cylinder pose
estimation (position error ≤ 0.3mm, pose error ≤

0.3 °), effectively solving the problem of
positioning deviation caused by reflection on the
cylinder surface; The force feedback system
monitors the contact force between the gripper
and the cylinder in real time, dynamically
adjusts the gripper closure force (150 ± 10N),
and avoids scratches on the cylinder surface
caused by uneven force. Compared with
traditional teaching programming methods, the
grasping cycle of this system has been shortened
from 6s/time to 4.2s/time, with an efficiency
improvement of 30%. It can operate
continuously for 1000 times without damage to
the workpiece, meeting the high cycle and high
reliability requirements of the production line.

4.2 3C Electronics: Precision Operation of
Chip Substrates
In the assembly process of smartphone camera
module, it is necessary to precisely grasp and
place the 0.2mm thick borosilicate glass
substrate, with a position error of ≤± 0.1mm and
no substrate breakage. The system recognizes
the edge feature points of the substrate through
the visual module, achieving a positioning
accuracy of ± 0.05mm; The force sensing
module adopts a micro force control strategy,
with the contact stiffness between the gripper
and the substrate controlled at 0.5N/mm and a
contact force resolution of 0.1N, effectively
avoiding substrate bending or cracking.
Simultaneously integrating vibration
suppression algorithm (cut-off frequency 50Hz)
to compensate for residual vibrations during the
movement of the robotic arm, and controlling
the substrate placement position error within ±
0.1mm. The application results show that the
yield rate of substrate assembly has increased
from 92% to 99.2%, and the daily production
capacity has increased by 20%, significantly
reducing production costs.

4.3 Logistics Sorting: Adaptive Grabbing of
Unordered Packages
At the e-commerce logistics automatic sorting
center, facing flexible packaging packages with
varying surface textures and a weight range of
0.1~5kg, the system uses the YOLOv8m object
detection algorithm (detection speed 30fps,
accuracy 95%) to identify the package grasping
area in real time, and the force sensor monitors
the contact force change rate through a 50ms
sliding window algorithm. When package
sliding is detected (force change rate>2N/ms),

56 Journal of Engineering System (ISSN: 2959-0604) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press



the system automatically adjusts the gripper
pressure (increment 5N) and dynamically
optimizes the gripping posture based on the
weight of the package. Compared with
traditional visual sorting systems, the success
rate of irregular object grasping in this solution
has increased from 78% to 95%, the package
damage rate has decreased from 3% to 0.5%,
and the sorting efficiency has reached 1200
pieces/hour, meeting the high-speed sorting
needs of the logistics industry.

5. Challenges and Future Prospects

5.1 Technical Challenges
The current collaborative perception technology
of vision and force still faces two core
challenges: firstly, insufficient adaptability to
extreme industrial environments. In
environments with strong vibrations (such as
stamping workshops, vibration frequencies of
50-200Hz) and high dust (such as casting
factories, dust concentration>10mg/m ³), the
quality of visual imaging decreases and the
signal noise of force sensors increases (noise
amplitude increases by 30%), resulting in a
significant decrease in perception accuracy; The
second is the contradiction between computing
power and real-time. The reasoning delay of
deep learning models such as AMFF Net and
GraspRL on edge computing platforms (such as
NVIDIA Jetson AGX Orin) is about 80ms,
which is difficult to meet the real-time
decision-making needs of high-speed production
lines (beat<2s), and the model complexity needs
to be further optimized.

5.2 Development Trends
Future technological development will focus on
three major directions: firstly, upgrading
anti-interference sensing technology, developing
integrated sensor packaging solutions for dust
and vibration resistance, and combining
adaptive noise suppression algorithms to
enhance sensing robustness in extreme
environments; Secondly, lightweight models
and computational power optimization are used
to reduce the computational complexity of deep
learning models through techniques such as
model pruning, quantization, and knowledge
distillation, achieving real-time inference at the
edge (latency<30ms); The third is the
integration of digital twins and human-computer
interaction, constructing a digital twin for

grasping tasks, and enhancing pre trained
models through virtual environment data
augmentation (such as lighting changes,
workpiece deformation, noise injection) to
reduce dependence on real industrial data;
Develop a safety collision detection algorithm
based on force feedback (response time ≤ 10ms),
combined with visual human pose recognition
technology, to achieve safe and efficient
grasping of robots in human-machine
collaboration scenarios, and promote the
large-scale application of "fence free"
production units.

6. Conclusion
This article proposes a visual and force
perception collaborative perception and
decision-making mechanism for the complex
scene adaptation problem in industrial robot
grasping tasks. Through the hardware
integration of "binocular stereo
vision+structured light 3D camera" and six axis
force sensor, the problem of multimodal data
spatiotemporal alignment has been solved;
AMFF Net based on attention mechanism
achieves dynamic adaptive fusion of visual and
force features; The reinforcement learning
grasping point decision model and force
position hybrid dual closed-loop control strategy
have constructed a complete closed-loop of
"perception decision execution". The application
verification of three typical industrial scenarios
shows that this mechanism can effectively
improve the grasping accuracy (positioning
error within ± 0.3mm) and robustness (success
rate of over 95%) under complex working
conditions, making it flexible

References
[1] Wang Yaonan, Jiang Yiming, Jiang Jiao, etc

Key Technologies of Robot Perception and
Control and Their Intelligent Manufacturing
Applications [J]. Automation Expo, 2023,
40 (10): 50-66

[2] Gu Xin Research on Multi modal Perception
and Grasping Detection of Robots Based on
Spatiotemporal Attention Mechanism [D].
Guangdong University of Technology
[2021-12-14]

[3] Xue Songdong Research on Coordinated
Control and Simulation of Target Search
Oriented Swarm Robots [D]. Lanzhou
University of Technology [2021-12-14]

[4] Jie Yinggang, Lanjiang Rain A review of

Journal of Engineering System (ISSN: 2959-0604) Vol. 4 No. 1, 2026 57

Copyright @ STEMM Institute Press http://www.stemmpress.com



research on collaborative robots and their
motion planning methods [J]. Computer

Engineering and Applications, 2021, 57 (13):
16

58 Journal of Engineering System (ISSN: 2959-0604) Vol. 4 No. 1, 2026

http://www.stemmpress.com Copyright @ STEMM Institute Press




