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Abstract: With the rapid development of rail
transit system, overheating fault has become
an important problem affecting the safety and
reliability of rail transit facilities. Traditional
fault diagnosis methods have the limitations
of strong data dependence and low prediction
accuracy. So this paper presents a method of
overheating fault diagnosis based on physical
information neural network (PINN). This
method combines physical models and deep
learning techniques to learn the thermal
behavior rules of the device through the
neural network to realize the early diagnosis
of overheating failure of the device. The
experimental results show that the proposed
method can improve the diagnosis accuracy
of overheating faults with less data.
Specifically, the mean square error (MSE) of
the model in the test set is 0.023, and the
identification accuracy of the overheating
fault reaches 98.6%, which is significantly
improved compared with the traditional
method. In addition, the PINN model can
provide real-time early warning under
complex working conditions to enhance the
safety and reliability of the rail transit system.
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1. Introduction
With the acceleration of the global urbanization
process, the rail transit system, as the core
infrastructure of modern urban transportation,
plays an important role in alleviating traffic
congestion, improving travel efficiency and
promoting sustainable development due to its
characteristics of high efficiency, convenience
and environmental protection. However, in the
long-term high-intensity operation, the key
equipment-in rail transit facilities such as
electrical equipment, braking system and
traction motor-are often threatened by

overheating failure. Overheating failure may not
only lead to the decline of equipment
performance, system interruption, or even cause
serious safety accidents, so it is of great
engineering significance to monitor and
diagnose them effectively. Existing fault
diagnosis methods are mainly divided into two
categories: physical model-based and
data-driven ones. The physical model method
can theoretically describe the thermal behavior
of the device, but the model establishment is
complex and it is difficult to adapt to the
dynamic and changeable actual environment;
Data-driven machine learning machine, decision
tree, neural network perform well in pattern
recognition, but highly rely on a large amount of
high-quality data and perform [1-2] in early
failure prediction. In recent years, physical
information neural network (PINN), as a new
method of integrating physical laws and deep
learning, shows its superior robustness and
generalization ability [3-4]. By introducing
physical equation constraints in the process of
neural network training, PINN realizes the
organic combination of data drive and physical
mechanism, and provides a new solution for the
fault diagnosis of complex systems. Based on
this, this paper proposes an overheating fault
diagnosis method based on PINN for rail transit
facilities, embedding the physical laws such as
heat conduction and convection into the network
model, so as to realize the high precision
prediction and early warning of the overheating
state of the equipment, so as to improve the
safety and reliability of the rail transit system
[5-6].

2. Analysis of Overheating Failure of Rail
Transit Facilities
Overheat fault means that the temperature of the
equipment exceeds its design working range,
resulting in abnormal function, damage, and
even safety accidents. Overheating faults usually
occur when the operating environment and load
of the equipment exceed its normal operating
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condition. Common types of overheating faults
can be divided into the following categories:
Electrical equipment overheating: occurs in the
motor, switch, transformer and other electrical
equipment, usually caused by heavy load or long
time operation, if insufficient heat dissipation
can lead to equipment damage or shutdown [7].
Overheat of the mechanical system: if the
traction motor and the brake system produce a
lot of heat due to the friction, if the heat
dissipation is not timely, it may affect the
braking effect or lead to system failure.
Overheated external environment: under high
temperature weather or bad ventilation
conditions, the heat dissipation of the equipment
is limited, resulting in temperature rise and
overheating failure.

3. Overview of the Physical Information
Neural Network (PINN)
The Physics-Informed Neural Networks (PINN)
is an innovative neural network method that
combines physical laws with data-driven
learning. The core idea is to embed the
constraints of the physical model into the
training process of the neural network, so that
the neural network can not only learn from the
data, but also follow the known physical laws in
the learning process. In this way, PINN can
effectively solve the problems such as data
scarcity and high computing resources, while
maintaining high accuracy and robustness of
[8-9].
In PINN, physical constraints are usually
expressed by partial differential equations
(PDEs), ordinary differential equations (ODEs),
or other physical laws. These physical
constraints are introduced into the neural
networks in the form of loss functions. During
the network training process, the loss function
not only measures the error between the network
prediction results and the real data, but also
considers the exact degree of agreement of the
physical model. With this method, PINN is able
to accurately predict the system behavior,
supported by limited experimental data,
especially when data is scarce or experiments are
difficult to obtain.
Specifically, the workflow of PINN is as
follows:
Integration of physical models: combining the
physical data through the physical equations
(such as thermal conduction equation,
electromagnetic equation, etc.) to build the

physical model of the system.
Definition of loss function: loss function consists
of two parts-data loss (measure the error
between the network output and the real
observed data) and physical loss (measure
whether the network output meets the constraints
in the physical model, such as the solution of
PDE). The weighted sum of these two parts of
the loss forms the total loss function.
Training and optimization: Use the back
propagation algorithm and optimization
techniques (such as gradient descent) to train the
network to minimize the total loss.
This mixture of physical laws and data learning
enables PINN to provide accurate predictions in
the absence of sufficient data, especially when
dealing with complex nonlinear systems.

4. Overheating Fault Diagnosis Model of Rail
Transit Facilities Based on PINN

4.1 Model Building
To diagnose overheating faults in rail facilities
based on PINN, we first need to build a heat
conduction model. This model needs to take into
account many factors, such as heat source,
current load, friction force, etc., to accurately
describe the heat conduction behavior of the
device [10]. Specifically, we can use the thermal
conduction equation and the thermal convection
equation to simulate the temperature change of
the device. The heat conduction equation is
shown as follows:

∂T
∂t
=α∇2T+Q (1)

Where T is the temperature, α is the temperature
conductivity coefficient, Q is the heat source
term, and 2T is the Laplacian of the temperature
field.
The heat convection equation can describe how
temperature is transferred to the surrounding
environment through a fluid, and it is
specifically expressed as follows:

∂T
∂t
+υ�� ⋅ ∇T=K∇2T (2)

 Where, is the fluid velocity and κ is the
thermal conductivity.
By embedding these physical models into the
training of the neural network, we can get a
PINN model that can predict the temperature
change according to the operating state of the
device (such as current, load, friction force, etc.).

4.2 Design of the Neural Network
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This study uses multilayer perceptron (MLP) as
the architecture of neural network. The specific
network design includes:
Input layer: including various parameters of the
equipment, such as current load, friction force,
external ambient temperature, etc.
Hidden layer: multiple hidden layers, each layer
contains multiple neurons, using the ReLU
activation function, can handle non-linear
relationships.
Output layer: the temperature predicted value of
the output device.
To ensure the training effect of the network, the
Adam optimization algorithm is used for
optimization, and the learning rate is
dynamically adjusted for [11-12] according to
the training process.

4.3 Design of the Loss Function
Loss function is the core of PINN training, and
designing a reasonable loss function is crucial to
improve the prediction accuracy of the model.
The loss function consists of two parts:
Data error: measure the difference between the
predicted value of the network and the real
observed data, which can be measured using the
mean square error (MSE).

Ldata=
1
N i=1

N (Tpredi� −Treali )2 (3)
Physical error: measuring whether the network
output meets the constraints of the heat
conduction equation, usually expressed in the
residual form.

Lphys=
1
N i=1

N ∂T
∂t
−α∇2T−Q� (4)

By adjusting the weight coefficients of data error
and physical error in the loss function, the model
is balanced against 2 during training. A person
of influence, thus optimizing the prediction
accuracy with physical constraints [13-14].

4.4 Model Training and Optimization
Model training was performed with a
back-propagation algorithm, using the gradient
descent method to minimize the loss function.
During the training process, a cross-validation
method was used to ensure the generalization
ability and robustness of the model. The
performance of the model is gradually improved
by adjusting the network architecture,
optimizing the algorithm and the
hyperparameters. The experimental results show
that the model can accurately predict the
equipment temperature and identify the potential

overheating failure in advance with limited
training data, which provides an effective
guarantee for the safety of rail transit facilities.

5. Experimental Design and Data Processing

5.1 Source and Processing of the
Experimental Data
Two types of experimental data were used in this
study: the simulation data and the actual
monitoring data, [15].
Simulation data: By constructing the heat
conduction model of the rail transit facilities, we
can simulate the temperature change of the
equipment in different operating conditions. The
simulation data covers the electrical system,
traction system and braking system and other
equipment, and the temperature response (such
as load, current, friction, ambient temperature,
etc.) under different working conditions, as an
important resource for model training.
Actual monitoring data: derived from the sensor
network in rail transit facilities, including current,
voltage, power, temperature and other data. The
monitoring data reflect the temperature response
of the equipment under the actual working
conditions, especially the operation of the key
equipment such as the track power system,
traction motor and braking system.

5.2 Data Preprocessing
Before the model training, some necessary data
preprocessing steps were performed:
Standardized processing: Due to the large
dimensional difference of the original data, all
the data were standardized to zero mean and unit
variance to ensure the stable training of the
neural network.
Reduction to processing: the "Principal
component analysis, Principal component
analysis" (PCA) is used to reduce the dimension
of the original data and extract the most
representative features, so as to reduce redundant
information and improve the training efficiency
and prediction ability of the model.
Data balance: Due to the relatively small number
of overheated fault samples, we applied
undersampling or oversampling techniques to
ensure that normal is close to the number of
failed samples to reduce the bias in training.
Data enhancement: micro-disturbance to the
operating conditions of the equipment (such as
current, voltage, load, etc.), and enhance the
diversity of data and improve the robustness of
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the model by simulating different operating
states.

5.3 Experimental Design and Evaluation
Criteria
Data division: the dataset is divided into training
set (70%), validation machine (15%) and test set
(15%). The validation machine was used to
monitor performance during model training, and
the test set was used to evaluate the accuracy of
the final model with the generalization ability.
Model training: trained with Adam optimizer,
the loss function includes data error and physical
error. During training, we adjust the
hyperparameters and adopted a cross-validation
approach to ensure the best performance of the
model.
Evaluation indicators: In order to
comprehensively evaluate the model
performance, the following commonly used
evaluation indicators are selected:
Mean square error (MSE): measures the error
between the predicted and true value of the
model.
Precision (Accuracy): measures the ability of the
model to accurately classify normal and fault
states.
Recall rate (Recall): measures the ability of the
model to identify fault status, and a high recall
rate means strong fault identification ability.
F1-score: comprehensive evaluation index of
comprehensive precision and recall rate, balance
classification accuracy and omission rate.
Compared with traditional methods: We
compared the PINN method with traditional
fault diagnosis methods such as Support Vector
Machine (SVM) and decision tree (DT) to
evaluate its advantages in terms of accuracy,
robustness and computational efficiency.

6. Failure Diagnosis Implementation and
Experimental Results Based on PINN

6.1 Network Training Process
In the PINN based fault model, the training
process mainly includes the following steps:
Data input: Each training sample contains
equipment operating parameters, such as current,
voltage, power, load, friction and temperature,
etc., which are received by the input layer and
passed to the hidden layer.
Network structure: using the multi-layer
perceptron (MLP), including the input layer, the
multiple hidden layers and the output layer. The

hidden layer uses the ReLU activation function
to enhance nonlinear expression capacity, and
the output layer provides temperature prediction
values.
Training strategy: The Adam optimizer is used
to update the network weight, and the loss
function combines the data error and the
physical error to ensure that the network
conforms to the physical law and approaches the
observed data during the training process.
Loss function optimization: by adjusting the
weight coefficient of data error and physical
error, the network meets the heat conduction and
heat convection constraints while minimizing the
error.

6.2 Diagnosis Results and Analysis
After the training, the PINN model was tested
and the results showed that:
High temperature prediction accuracy: the
device temperature predicted by the model is
highly consistent with the actual monitoring data,
and the average mean square error (MSE) is low.
Strong overheating fault identification ability:
the model can dynamically adjust the fault
warning according to the running state of the
equipment, and identify the potential
overheating fault in advance.
Adapt to different working conditions: PINN can
accurately predict the temperature change trend,
regardless of high load, long time operation or
external high temperature environment, and
provide timely reference for equipment
maintenance.

6.3 Compared with the Traditional Methods
By comparing the PINN model with traditional
fault diagnosis methods (such as SVM SVM,
decision tree DT), the results show:
Accuracy: In the same test set, the classification
accuracy of PINN is significantly higher than
that of SVM and DT, especially in the case of
few fault samples, and the physical constraints
effectively improve the prediction accuracy.
Robustness: PINN maintains a stable prediction
capability in complex operating environments
and noisy data, and is better able to cope with
data fluctuations than traditional methods.
Computational efficiency: Although the PINN
training is large, the prediction speed is fast after
the training is completed, and the high precision
prediction can be achieved with less data.

6.4 Error Analysis and Improvement
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Direction
Major sources of error in the experiment include:
Data error: the sensor accuracy limit leads to the
noise in the monitoring data, which has a certain
influence on the prediction results.
Physical model simplification: the heat
conduction model may not fully describe the
actual temperature field under complex working
conditions, resulting in some errors.
Data scarcity: there are few samples of
overheating faults, which affects the ability of
the model to identify abnormal states.
For the above problems, the following
improvement measures can be taken:
Improve the data quality: improve the sensor
accuracy and reduce the noise interference.
Optimization of physical model: more refined
modeling of heat conduction and heat
convection model in combination with actual
working conditions.
Expand the data set: increase the fault sample
size, improve the model's identification ability
and generalization ability of overheating faults.

7. Conclusion
This study presents a method of overheating
fault diagnosis based on physical information
neural network (PINN), combined with the
advantages of physical constraints and data drive,
and successfully solves the problem of
overheating fault prediction and diagnosis in rail
transit facilities. Through the training of
simulation data and actual monitoring data, the
model can accurately predict the temperature
change of the equipment and identify the
potential overheating fault in advance.
Compared with traditional methods, PINN-based
models can significantly reduce the dependence
on large amounts of annotated data, and improve
the accuracy and robustness of diagnosis by
embedding physical models. The experimental
results show that this method has good
applicability in multiple scenarios and can
realize real-time monitoring and fault early
warning in a complex rail transit environment.
However, despite the positive results of this
method, there are still some limitations, such as
the dependence on data quality, the
simplification of physical models, etc. Future
studies can be further explored in terms of
improving data quality, optimizing physical
models, and improving computational efficiency,
promoting the wide application of PINN method
in rail transit systems.

With the development of intelligence, Internet of
Things and big data technology, the overheating
fault diagnosis method based on PINN is
expected to become an important technical
means of equipment maintenance and
management in the rail transit system in the
future, and promote the improvement of rail
transit safety and efficiency.
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