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Abstract:  The  single-degree-of-freedom
(SDOF) spring-mass system is one of the most
basic idealized models in structural dynamics.
This paper shows how the SDOF theoretical
framework has evolved from the classical
analytical theory based on Newtonian
mechanics and linear assumptions to the
numerical-computation paradigm for
capturing physical reality via nonlinear
constitutive relations, and finally to an
emerging integrated-systems framework that
couples real-time sensing with active control
theory. Using a decomposition framework
organized around the system’s fundamental
physical attributes (damping, stiffness, and
inertia), the paper systematically explains
how nonlinear damping, dynamic-fracture
mechanisms, and the introduction of the
inerter fundamentally change dynamic
behavior and lead to changes in modeling
paradigms. The analysis indicates that the
research paradigm has moved from seeking
closed-form analytical solutions to finding a
balance between computational tractability
and physical fidelity, and is now moving
toward the construction of intelligent systems
marked by a modeldatacontrol closed loop.
The paper ends by systematically identifying
the core challenges and conceptual gaps left
within the current theoretical landscape.
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1. Introduction

The axiomatic basis of knowledge in vibration
engineering and structural dynamics is the
theoretical framework of the single-degree-of-
freedom (SDOF) spring-mass system. The value
of its theory does not only depend on its
mathematical simplicity, but also it serves as a
whole frame of reference that fully shows the
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basic principles of linear system dynamics and
gives an essential theoretical standard to its own
extensions into the nonlinear realm.

This classical linear theoretical system is based
on two basic assumptions to make it predictive:
first, the constitutive relation of the material
follows Hooke Law, i.e. the restoring force is
linearly related to displacement; second, the
energy dissipation mechanism of the system can
be well modeled by a viscous damping model
that is linear in velocity. Both of these conditions
ensure that the governing equation of the system
is a linear ordinary differential equation and
therefore the principle of superposition holds
and consequently the system can be fully
analyzed in the frequency domain as well as
analytically solved [1, 2].

Nevertheless, in engineering practice, physical
systems are often non-Hookean (e.g. material
yielding, gaps) and non-viscous (e.g. dry friction,
material hysteresis). The existence of these
nonlinear ~ mechanical  behaviors  causes
systematic discrepancies between the predictions
of linear theory and physical reality. Therefore,
the main driving force behind research on SDOF
systems is the constant improvement of their
force-displacement and force-velocity
relationships to build mathematical models that
can better predict and describe real physical
processes. This refinement process essentially
reflects a transition from a closed, fully
analytically solvable linear theoretical system to
an open, generalized dynamics model system
that depends on numerical computation and
experimental validation [3, 4].

The paper seeks to answer the following
questions in a systematic way: What theoretical
benchmark and applicability boundaries does the
linear theoretical framework of the SDOF
system and its inherent assumptions establish? In
order to overcome the limitations of this
benchmark, = what  important theoretical
extensions and model modifications have been
triggered across the three fundamental physical
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dimensions that govern system dynamics-
damping, stiffness, and inertia? What new
computational and verification challenges do
these extensions introduce as they improve
model predictive capability? Finally, how do
these different extensions collectively point
towards a future development framework
integrating modeling, system identification, and
active control?

In order to answer these questions, the paper will
be organized in the following way: First, it
strictly derives the linear governing equation and
specifies its conditions of validity and theoretical
limitations. Second, it explains the inherent laws
of linear systems by analyzing free and forced
vibration. Then, wusing a decomposition
framework based on physical attributes, it
critically reviews forefront research in nonlinear
damping, nonlinear stiffness, and inertial
extensions. Finally, through comprehensive
comparison and gap analysis, this paper argues
that SDOF system research is undergoing a
methodological revolution from system analysis
to system design [4, 5]. Its core objective is
changing from understanding and predicting the
dynamic behavior of existing systems to actively
endowing systems with new, intended dynamic
characteristics. The future breakthrough is in
resolving the systemic mismatch between the
modeling, data, and control components [4].
This paper is a critical review and not an original
experimental research. It seeks to synthesize,
assess and contextualize current theories and
models of SDOF systems thus explaining the
evolutionary path of the system, identifying the
current core issues, and future directions.

2. Physical Modeling and Linear Theoretical
Framework: Benchmark and Boundary
Conditions

Consider an idealized SDOF system, with its
dynamics characterized by a mass block mm, a
linear spring (stiffness k), a viscous damper
(damping coefficient c), and possible external
excitation F(t), as shown in Figure 1. Taking the
static equilibrium position as the origin, the
system displacement is represented by x(t).
Based on Newton’s second law, the system

dynamics are described by the following
equation:
mx(t)+cx(t)tkx(t)=F(t) (1)

This is the mathematical basis of classical linear
vibration theory. The analytical solution is
complete only if the principle of linear

Copyright @ STEMM Institute Press

superposition is valid, which in turn is based on
the fundamental assumption that the internal
forces (spring restoring force and damping force)
are linearly proportional to the system state
variables (displacement and velocity).

The strength of this linear theoretical framework
is that it provides a specific, fully solvable
theoretical standard. Nevertheless, the creation
of this standard also clearly defines its applicable
theoretical limits. This limit is the collection of
all dynamic problems meeting the linear
assumptions.

In addition, classical linear theory has been
rigorously established to show that static
deformation does not affect the natural
frequency of an SDOF system [1, 2]. Chen
(2017) showed that when the spring axis at a
state of equilibrium is tangent to the vibration
path and the generalized mass does not vary with
the coordinate, the natural frequency remains

k. . .
0,= \/; , irrespective of the amount of static

displacement. This finding strengthens the
theoretical limit of the linear model since it
demonstrates that the modal parameters and
dynamic response are independent of the pre-
deformation in the linear assumptions [6].

Once the relationship between  force-
displacement or force-velocity of the system is
no longer linear, such as when restoring force
has nonlinear stiffness of the form, or damping
force has non-smooth properties like Coulomb
friction, then the governing equation becomes a
nonlinear  differential equation and the
superposition principle fails, and hence the
completeness of its analytical solution also fails.
Therefore, the fundamental importance of
developing the linear theoretical system is not
only to solve problems in its boundary but also
to provide a performance comparison and
theoretical starting point for all nonlinear
problems beyond this boundary [2].
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Figure 1. Schematic Diagram of the Single-
degree-of-freedom System, should Include
Clearly Labeled m, k, c, F(t), and
Displacement x(t)

Figure 1 Caption: Idealized model of a single-
degree-of-freedom (SDOF) spring-mass-damper

system.
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3. Free and Forced Vibration: Intrinsic Laws
and Observable Phenomena in Linear
Systems

The system will experience free vibration when
the external excitation F(t)=0. Its transient
response properties are defined by the
eigenparameters of the system. When there is no
damping (c=0), the system will be undergoing
undamped simple harmonic motion at the natural

frequency o,= \/% , which is a property of the

system. Upon introducing viscous damping (c>0)

the nature of the return to equilibrium of the

system is determined by the dimensionless
. . . C .

damping ratio C——z = and it can be

underdamped ( { <1) decaying oscillation,
critically damped ({=1) fastest non-oscillatory or
overdamped ( { >1) slow return [1, 2], as
illustrated in Figure 2.
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Figure 2. Free Vibration Response Curves of
Various Damping Ratios

Figure 2 Caption: Time-varying free vibration

response of an SDOF system at varying damping

ntx(t) [m]

ratios C.
When the system is subjected to harmonic
excitation F(x)=Fycoswt , its steady-state

response is a harmonic function of the same
frequency. The amplitude X(w) and phase lag
¢(®w) determined by the system’s frequency
response function:

Fo 2=
X(0)= ()= tan ! (s

[0 ey

) (2)

The resonance is observed when the frequency
of the excitation @ gets close to the natural
frequency of the system ®, and the amplitude
of the response becomes the largest. The
damping ratio { directly regulates the bandwidth
of the system and sharpness of the resonance
peak [1, 2], as shown in Figure 3.
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Figure 3. Amplitude-frequency Response
Curves of Forced Vibration at Various
Damping Ratio
Figure 3 Caption: Normalized steady-state
amplitude of a forced SDOF system as a

function of frequency ratio r=®2 under different

damping ratios (. The amplitude is normalized
by the static displacement %

It should be noted that the entire image of
resonance presented above is valid only under
the assumption of linear systems. In nonlinear
systems, the frequency response characteristics
are  fundamentally  different;  amplitude-
dependent natural frequency, response jumps,
superharmonic and subharmonic resonances can
occur [3]. In such cases, the frequency response
curve given by linear theory is no longer a valid
approximation of the system behavior and may
give an entirely incorrect physical picture. Table
1 summarizes the specific effects of these
parameters on the SDOF system behavior.

Table 1. Summary of Parameter Effects on SDOF System Behavior

Parameter Natural  frequency|Damping ratioFree vibrationResonance Resonance peak|System

change  |o, c decay frequency bandwidth

m 1 | | Slower | i INarrower

k 1 1 | Faster i | Wider

c1 — i Faster Slight | | \Wider
forefront extension work in terms of three basic

4. Nonlinear Frontier Extensions: Theoretical  physical properties that determine system

Revisions Based on Physical Attribute dynamics: damping (dissipation), stiffness

Decomposition (restoration), and inertia (kinetic energy storage).

In order to estimate physical reality, the force
relations of the linear model should be re-
examined. This part breaks down and discusses
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4.1 Damping Model Extensions: From Linear
Approximation to Characterization of Non-
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Smooth Dissipation Mechanisms

The linear viscous damping model is a
convenient mathematical approximation of the
more complex energy dissipation mechanisms,
which is physically distorted. The difference
between its experimental measurement and
theoretical description presents one of the main
challenges in using the SDOF model in precision
machinery and contact dynamics. Marino and
Cicirello (2020) [7] experimentally measured the
steady-state response and stick-slip motion
boundary under Coulomb friction with a
precision-controlled SDOF system. This work
has theoretical importance because it empirically
proves that any linear model cannot predict
dynamic behaviors caused by non-smooth
nonlinear forces, such as distorted frequency-
response curves and abrupt phase hysteresis.

But the modeling of damping mechanisms at the
engineering frontier has gone beyond classical
Coulomb-friction models. Fractional calculus
models, by introducing a convolution
relationship between stress and strain, provide
the mathematical foundation for non-local,
memory-dependent damping. Research shows
that for complex media like viscoelastic
materials,  using  fractional  derivatives
(intermediate between pure elasticity and pure
viscosity) to represent their constitutive relations
achieves much higher accuracy [5]. When
dealing with non-smooth or memory-dependent
dynamic behaviors, research methods have to
move from analytical solutions to numerical
simulation. As a result, numerical time
integration and fractional differential equation
solvers are essential tools.

Besides material-based and interface-based
damping mechanisms, recent research has
revealed that nonlinear damping can also arise
from the geometric configuration itself. The
study by Kuttan et al. (2024) [8] shows that
adding a secondary spring to dynamically
control the normal force on a frictional interface
results in strongly nonlinear energy dissipation.
Their model attained an almost 40%
improvement in effective damping efficiency
and got rid of the amplitude—jump phenomena
usually related to geometric nonlinearity. A
particularly significant finding is that when the
second spring is at its vertical equilibrium
position, the system displays its lowest natural
frequency and  strongest  off-resonance
attenuation, which suggests an optimal setup for
energy dissipation. This work brings attention to
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an important but overlooked mechanism: the
coupling among geometry, normal-force
modulation, and nonlinear friction, expanding
damping research beyond traditional frictional
and viscoelastic models.

The contemporary theoretical problem is that
there is no general damping scheme that would
be able to integrate the wvarious dissipation
mechanisms, including rate-independent
Coulomb friction and displacement-dependent
hysteresis, memory-based fractional models, and
geometry-based nonlinear friction. The current
approximate analytical methods like equivalent
linearization and harmonic balance method are
trade-offs between computational efficiency and
physical fidelity under certain operating
conditions. As damping theory deepens—from
linear viscosity to non-smooth friction and
beyond to memory-based fractional and
geometry-modulated models—it shows a basic
limitation: making damping models more
physically accurate makes them mathematically
and computationally more complex. This
universal rule gives a fundamental premise for
model selection and validation in nonlinear
dynamics [3].

4.2 Stiffness Model Extensions: From
Continuum Mechanics to a Zero-Dimensional
Mechanism-Isolation Framework

The use of the SDOF formulation in dynamic
fracture problems shows that it has a unique
epistemic value as a zero-dimensional
mechanism-isolation model. By removing all
spatial degrees of freedom from the system, it
reveals the temporal dynamics that control
failure processes without interference from
geometric or field-gradient complexities. This is
what differentiates the SDOF framework from
classical vibration analysis. In classical analysis,
model reduction mainly aims at computational
convenience. In dynamic fracture, its role is
fundamentally conceptual—to isolate inertia-
driven temporal effects that are otherwise
included in full continuum models.

The recent work by Kazarinov et al. (2024) [9] is
a good illustration of the explanatory power of
this very simplified modeling paradigm. Their
research demonstrates that even a linear mass-
spring oscillator supplemented with a rate-
sensitive or softening-type failure criterion can
reproduce two typical phenomena reported in
high-rate fracture experiments:

Rate-dependent apparent strength increase.
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Under rapidly rising loads, inertia gives rise to a
temporal deformation lag. This means the
oscillator  can’t reach its  quasi-static
displacement corresponding to the instantaneous
load. The lag functions as an inertia barrier,
allowing the system to survive loads beyond its
static  strength. The resulting ‘“apparent
strengthening” is not a property of the material
but an emergent effect from the competition
between loading rate and inertial timescale.
Fracture delay under pulse-type loading.

When the system is subjected to a short-duration
pulse, fracture can happen after the external load
has already reached its peak. This delay is
usually explained in continuum mechanics
through nonlocal temporal functionals (e.g.,
incubation-time criteria). It naturally comes from
the SDOF oscillator as a result of inertial
accumulation of elastic energy. The oscillator
effectively “remembers” the previous stress
history even though the load has decreased.
These findings prove that the SDOF oscillator is
a temporal model of more sophisticated
continuum fracture models [9]. The effects,
which are usually ascribed to microstructural
kinetics or complicated field evolution (dynamic
increase in fracture toughness or crack initiation
delay), can be qualitatively described by an
inertial system. This strengthens the opinion that
inertia does not just modify the stress
distribution but is one of the main factors
causing dynamic failure on short time scales.
Nevertheless, the basic drawback of this
modeling method should be underlined. Due to
the fact that the SDOF model is naturally zero-
dimensional, it is not capable of depicting any
spatially distributed phenomena: crack-tip stress
intensity factors, energy-release rates, cohesive-
zone evolution,  crack-path instability,
microbranching, stress-wave interactions, or
localization patterns. As a result, the time-
dependent measures of the oscillator (e.g., delay
time, dynamic strength) are conceptually
incommensurate  with  continuum fracture
measures such as dynamic fracture toughness or
crack-growth laws. They cannot be directly
compared numerically because they are at
different ontological levels of physical
description.

The dimensional discontinuity between lumped-
parameter and continuum models must be
acknowledged  explicitly, as well as
mathematically scaled, to bridge these
frameworks. Validation should be based on
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systematic  cross-comparison with full-field
numerical methods (e.g., XFEM, cohesive-zone
FE, peridynamics) or high-speed experimental
diagnostics (e.g., DIC, caustics), which can
resolve crack-tip fields and propagation
dynamics.

Overall, the SDOF model is a mechanism-
isolation platform in dynamic fracture mechanics.
Its worth is not to make quantitative predictions
but to explain the dominant temporal effects-
inertia-governed strengthening and delay—
before spatially resolved theories are used. When
interpreted correctly, these simplified models
take an essential place in the multi-scale fracture
analysis hierarchy, acting as a conceptual base
for more advanced formulations to be
systematically built upon.

4.3 Inertial Element Extensions: Introduction
of the inerter and Reconstruction of system
transfer functions

The invention and use of the inerter is a
paradigm shift as it introduces a new two-
terminal inertial element, instead of modifying
existing parameters to actively reconfigure
dynamic characteristics of the system [10].
Basili et al. (2019) [11] have shown that the
attachment of an inerter to a spring-damper
system in parallel can add new anti-resonance
poles to the frequency response function of the

SDOF system, and consequently provide
effective vibration suppression at certain
frequencies.

It is also interesting to note that the idea of
SDOF model does not only involve new
elements; as a simplified and abstract design
philosophy, it has great potential in controlling
vibrations of more complex structures. As an
example, one method wused in vibration
suppression studies of rod-coupled systems is
optimizing parameters to make the dominant
modal dynamic properties of a complex
continuous subsystem equal to those of a
nonlinear SDOF system for control strategy
design. This equivalent SDOF control
philosophy  demonstrates its  conceptual
simplicity and design effectiveness in handling
multi-degree-of-freedom systems [12].

The physical nature of the inerter is that it gives
the system an equivalent inertial path
independent of the mass, thereby changing the
modal energy distribution of the system. This
represents a shift in SDOF system design from
parameter optimization within a given structure
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(m, c, k) to actively shaping its transfer function
by introducing new physical elements or
equivalent control strategies.

The core scientific question in the future is how
to develop a co-design theory for the inerter and
semi-active/active control elements, such as
magnetorheological dampers, and how to scale
the SDOF control philosophy more effectively to
large, complex structures. This requires
developing new control laws that consider
displacement and velocity feedback, along with
the dynamic states introduced by the inerter or
equivalent SDOF state in the feedback loop. The
aim is to achieve truly adaptive vibration control
across broad frequency bands [4, 11].

5. Comprehensive Discussion:
Evolution and Theoretical Frontiers
A systematic literature review on SDOF system
research shows that there has been a paradigm
shift in the field. This change is not an
incremental accumulation of research but a
paradigm shift in research philosophy and
methodology, which focuses on redefining the
relationship between model accuracy, physical
reality, and engineering applicability.

Paradigm

5.1 Structural Transformation of Research
Paradigms

The intellectual development of SDOF system
research is represented as a series of different
methodological paradigms, each of which
redefines the relationship between model fidelity,
analytical tractability and engineering utility.
The first Linear Analytical Paradigm created the
basis of the field, its predictive power being
based on Newtonian mechanics and a linear
mathematical framework. This paradigms main
contribution was to provide closed-form
solutions that gave full spectral and temporal
characterization of system response, albeit under
the strict and often physically limiting
assumptions of Hookean elasticity and viscous
damping [1, 2].

The ubiquitous experience of nonlinearities
material yielding, friction, geometric
nonlinearities led to a paradigm shift in the
direction of Numerical Computation. This was a
radical re-alignment between mathematical
convenience and physical authenticity. The
central task became numerical integration of
governing equations and use of specialized
analyses, such as experimental investigations of
nonlinear oscillators with dry friction [7], and
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numerical algorithms for fractional derivative
models [3, 5]. The recognition of numerical
solutions as the main results of research
indicated a new balance that gave priority to
computational efficiency and phenomenological
correctness over the completeness of analytical
solutions.

The rise of this numerical paradigm is not only
demonstrated but also critically complexified by
seminal contributions made by the domestic
scholarship, which explain its inherent
methodological tensions in an outstanding
manner. In the field of nonlinear damping
optimization, the research conducted by Tian
(2025) [13] offers a stark contrast to the global
use of iterative numerical schemes. When global
studies have mainly used equivalent linearization
[7] or genetic algorithms—approximate
methods—to deal with the indeterminate forms
that arise in DVA optimization, Tian uses
L’Hopital’s rule to obtain a closed-form
analytical solution. This method does not simply
estimate but strictly gets the best damping
condition, setting up a theoretical standard. Its
deep limitation, though, is that it depends
axiomatically on system differentiability, a
requirement that isn’t met in regimes where
impact or dry friction exists, thus showing a
fundamental limit of the analytical approach in a
numerical age.

Meanwhile, in the field of intelligent control, the
study by Zhong et al. (2022) [14] touches a
critical epistemological debate in control theory:
the difference between model-based and model-
free paradigms. In contrast to popular
international approaches such as Adaptive
Sliding Mode Control or Active Disturbance
Rejection Control (ADRC), which attempt to
improve performance by improving physical
modelling or explicit disturbance estimation,
Zhongs use of Full-Form Dynamic Linearization
Model-Free Adaptive Control (FFDL-MFAC) is
a more radical step. It eliminates the model-
identification step by surgery. It shows that
precise stabilization of a magnetically levitated
system (as shown by a 0.005 decrease in
overshoot and a 0.2607 decrease in RMS
displacement error versus PID) can be achieved
solely from input-output data streams. The
resulting epistemological cost is a black-box
controller. Its operational success is not linked to
mechanistic understanding, raising reasonable
concerns about its extrapolative reliability in
untested operational areas.
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In addition to these applied developments, the
study by Li, Li and Zhang (2025) [15] re-
establishes the role of SDOF system as a
laboratory of mechanistic discovery. Their
numerical analysis of a bilaterally restricted
impact oscillator, revealing such basic sequences
as grazing bifurcations and period-doubling
paths to chaos is a direct offspring of the global
tradition of research into piecewise-smooth
dynamical systems. This book does not merely
apply; it gives the basic vocabulary of nonlinear
phenomena, the bifurcations and attractors that
form the basis of the behaviour of real-world
discontinuous systems, thus providing the
conceptual ground on which applied control and

Table 2. Comparison of Research Directions

optimization
constructed.
Together, these domestic researches solidify the
central antinomy of the modern numerical
paradigm: a strong and frequently essential
improvement in application-specific predictive
capacity is acquired at the cost of advanced
numerical processing and a common sacrifice of
generalizable physical understanding. They
show that the move to numerical computation is
not only a tool change, but an overall
transformation of the nature of dynamical
inquiry. A detailed comparison of these
international and domestic research directions is
provided in Table 2.

International vs Domestic

techniques are  eventually

. Contrasts with Contrasts with international
[Experimental . .
Quantification of numerical  methods  (e.g.,  equivalent
NonlinearMarino & Cicirello . .. [Tian, Q. K|linearization): Provides a unified analytical
. Coulomb friction, . . . .
damping [(2020) . . . (2025) solution for optimal damping using
stick-slip motion| A s 15 .
. L’Hopital’s rule, offering exact results versus
boundaries .
common approximations.
IDemonstrates rate_Limi ted
dependent dynamic domestic Conforms to the international basic research:
Dynamic |[Kazarinov et  al|strength; fractureS tudics OnOffers mechanistic study of bifurcations and
fracture |(2024) delay; mass-on-springhi h-rate chaos in collision systems, generalizing the
model as surrogate for| N £ work on non-smooth dynamics.
. racture
dynamic fracture
Contrasts with international model-based
Inerter introduces anti- . [strategies (e.g., ADRC): It uses a data-driven,
. . ] Zhong, Z., Cai, .
Vibration - resonance;  enhances : model-free  adaptive  control (MFAC)
Basili et al. (2019) 0. ., & Qi, Y| . . . .
control broadband  vibration| paradigm, which does not require explicit
. (2022) : . . .
suppression modeling of the system and identification of
its parameters.

Now, the discipline is indicating tendencies of
an emerging Intelligent Integration Paradigm.
This new paradigm attempts to transcend
traditional disciplinary boundaries and build a
complete research structure that incorporates
physical modeling, system identification, and
active control. Its most fundamental aspect is the
change in the nature of passively characterizing
the behavior of systems into actively designing
and controlling dynamic response. In this
paradigm, even complex dynamic
representations such as fractional models can be
implemented in real-time controllers to obtain
intelligent control through accurate model
prediction [4, 11].

5.2 Key Challenges and Theoretical Frontiers
Against the backdrop of paradigm evolution,
current research faces three interconnected core
challenges:
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First, at the theoretical level, there is the issue of
fragmented constitutive models. The current
nonlinear models are mainly empirical formulas
for specific phenomena, and they do not have a
unified theoretical framework based on
fundamental mechanical principles. For example,
although empirically successful, the physical
mechanism behind fractional damping model
parameters and their identification methods still
need deeper theoretical support from materials
science [3]. This results in poor model
transferability and unclear physical meaning of
parameters, which limits their predictive
reliability in unverified operational conditions.

Second, the methodological level has the
bottleneck of failed cross-scale association.
There is no strong theoretical mapping between
lumped-parameter models and continuum
models, which results in a disconnection
between parameter identification of zero-
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dimensional models and evolution prediction of
high-dimensional fields [3]. As demonstrated by
dynamic fracture analysis (Section 4.2) and
equivalent SDOF control strategies (Section 4.3),
quantitative  associations  between  global
temporal dynamics revealed by SDOF models
and spatial stress fields, damage evolution, or
dominant modes of continuum structures are yet
to be established as an unresolved
methodological bottleneck [9, 12]. This problem
can only be solved by creating new
mathematical tools that would allow establishing
quantitative relationships between models at
different scales.

Lastly, the system level presents the issue of
disconnected  technical components. The
modeling, identification and control processes
are usually considered as separate or sequential
issues with no common optimization framework.
This separation is reflected in particular terms as
parameter identification which does not take into
account control characteristics, physical models
that do not consider the necessity to update in
real time, and control designs on over-simplified
models. As an example, a typical one is that the
co-design of online parameter identification
algorithms for fractional damping systems and
their respective fractional-order controllers in
real-time is still an open research problem|[3, 4].
A deeper question is: can we create smart
constitutive models whose structure or order can
change dynamically according to the actual
observation data, thus essentially circumventing
the conventional path dependence of pre-defined
model forms [4]?

5.3 Future Development Directions
Addressing these challenges, future research

should seek breakthroughs in three key
directions:
Developing  Constitutive ~ Theory  Using

Generalized Mechanical Principles: In the future,
more work should be done to look into
frameworks like fractional thermodynamics. The
goal is to build nonlinear constitutive theories
based on more fundamental physical laws that
can  consistently explain  rate-dependent,
memory-dependent, and non-local dissipation
phenomena. This will give model parameters a
clearer physical meaning [3, 7].

Creating Mathematical Techniques to Associate
Multi-Scale Models: It is necessary to address
the model order reduction theory and data-driven
scale-bridging methods. This involves working
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on how to accurately project the dynamic
information of high-dimensional continuum
systems onto low-dimensional, even fractional-
order, SDOF models using mathematical
transformations, and providing spatial field
validation for conclusions drawn from SDOF
models in problems like dynamic fracture [9, 12].
Solving Real-Time Co-optimization Problems
with Physical Constraints: In the case of the
Intelligent Integration Paradigm, it is necessary
to create embedded real-time simulation and
physics-informed machine learning technologies.
The aim is to reach online, fast calculation of
complex dynamic models such as fractional
models, and use this as the core to create
algorithms that combine system identification,
state estimation, and control decision-making
within a single optimization framework,
eventually forming a high-performance model-
data-control closed loop [4].

6. Conclusion

This systematic review shows that the theoretical
development of the single-degree-of-freedom
spring-mass system is far from being a simple
model improvement. It’s essentially a
continuous process of tension adjustment based
on the three central dimensions: “model
accuracy”, “physical reality”, and “engineering
applicability”. The linear theoretical system
gives a full benchmark, but its value is best
realized in the process of being surpassed. This
paper, by breaking down nonlinear extensions
into updates to the three fundamental physical
dimensions (damping, stiffness, and inertia),
clearly shows how physical mechanisms deepen
and computational complexity rises with each
model improvement. At present, the field is at an
important point of shifting from separate
nonlinear model research to building an
integrated model-data-control system framework.
When facing core problems such as the lack of a
universal theory, failed cross-scale associations,
and broken system loops, future research should
combine first-principles modeling, advanced
system identification, and intelligent control
theory. That’s the key to solving these core
challenges and advancing the field [4].
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