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Abstract : Patent recommendation systems
are crucial decision-support tools for
innovation  management, yet existing
algorithms often neglect the heterogeneous
needs of stakeholders (enterprises focus on
market value, research institutions on
technical novelty, and patent attorneys on
legal risks). Conventional models adopt
homogeneous ranking strategies that fail to
align with differentiated decision goals. To
address this gap, this study proposes a multi-
subject differentiated patent recommendation
algorithm integrating domain-specific
knowledge graphs and demand-weighted
graph neural networks (DW-GNN). First, a
three-dimensional  stakeholder = demand
framework (Technical, Value, Risk) is defined
based on systematic patent valuation
literature, and subject-specific weights are
calculated via a hybrid AHP-entropy method.
A demand-weighted graph model learns
representation vectors incorporating
stakeholder priorities, and a multi-objective
scoring function generates subject-adapted
rankings. Experiments show that the
algorithm improves recommendation
performance across stakeholder groups using
standard evaluation metrics. This research
contributes a stakeholder-oriented patent
analytics system, advancing personalized
knowledge graph reasoning theory and
supporting innovation management practice.
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1. Introduction

Traditional patent search systems have long
relied on methods such as Boolean queries,
keyword filters, and classification codes like the
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International Patent Classification (IPC) and the
Cooperative  Patent  Classification (CPC).
Despite their widespread use, these systems
often necessitate a considerable amount of
domain expertise due to the complexity involved
in navigating unprioritized results generated by
these queries (Erdi et al, 2012). Even
contemporary patent recommendation systems
based on collaborative filtering, content
similarity, or citation graphs often provide
homogenous ranking results that overlook the
strategic differences between stakeholders. For
example, an enterprise developing -electric
vehicles may seek patents enabling
manufacturing efficiency and licensing value,
while a research institution prefers scientifically
novel patents within emerging material sciences
(Yang et al., 2015). Patent attorneys, in contrast,
examine prior art to detect infringement risk or
litigation value, rather than commercialization
potential (Jeon & Suh, 2019). Yet most patent
recommenders treat these three subjects as a
single type of “user,” implicitly assuming
identical objectives. This lack of differentiation
results in recommendation bias, excessive
irrelevant  outputs, or even misleading
suggestions during technology investment,
licensing negotiations, or IP litigation.

From a research perspective, stakeholder
heterogeneity is not merely a user preference
issue but a strategic misalignment of decision
objectives. Enterprises evaluate patents based on
market scalability, competitive positioning, and
licensing profitability; research institutions focus
on knowledge contribution and long-term
technical frontiers; legal stakeholders prioritize
risk, enforceability, and litigation costs. These
diverse objectives shape the value interpretation
of the same patents. For instance, a patent with
broad claims but untested novelty may be highly
valuable for a startup’s market positioning but
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risky from a legal standpoint. Conversely,
narrow but novel patents may be more suitable
for research institutions but commercially
unattractive. Such discrepancies reveal why a
uniform ranking algorithm intrinsically fails to
support multi-stakeholder decisions.

Recent advancements in artificial intelligence,
particularly through the development of
knowledge graphs (KGs) and graph neural
networks (GNNs),  present  significant
opportunities for enhancing patent analytics.
KGs facilitate the representation of intricate
relationships among inventors, technologies,
citations, and industry domains, which plays a
vital role in understanding the broader context of
patent data (Siddharth, 2025). However, existing
KG-based patent recommenders primarily
emphasize technical similarity and graph
structure but seldom incorporate multi-subject
demand attributes. They treat knowledge nodes
as static objects rather than strategic entities
whose relevance depends on user priorities.

To resolve these limitations, this work
introduces a multi-subject differentiated patent
recommendation algorithm that integrates
knowledge graph reasoning with demand
weighted GNN embedding. Three contributions
define its novelty:

®A stakeholder demand framework for patent
evaluation, distinguishing Technical, Value, and
Risk dimensions, along with a hybrid AHP-—
entropy weighting method to quantify subject-
specific priorities.

®A demand-enriched patent knowledge graph
schema that incorporates stakeholder and
attribute nodes into the semantic network.

®A multi-objective recommendation algorithm
that embeds demand weights within a graph
model and introduces a subject-adapted ranking
function that balances technical similarity, value
estimation, and legal risk.

This differentiated approach achieves improved
recommendation accuracy and enhanced
decision relevance—a critical aspect for research
aiming at practical impact. By bridging GNN-
based recommendation with multi-subject value
interpretation, this research offers an analytical
framework that integrates technical rigor with
practical innovation management support,
addressing the strategic misalignment of existing
uniform recommendation systems.

2. Literature Review
The literature review examines two foundational

http://www.stemmpress.com

research streams related to multi-subject patent
recommendation systems: ) patent
recommendation methodologies, (2) knowledge
graph and graph neural network approaches for
semantic modeling. This synthesis reveals how
prior research has addressed technical similarity
while overlooking heterogeneous decision
values among innovation actors.

2.1 Patent Recommendation Systems

2.1.1 Traditional Patent Retrieval and Search
Patent search originated as a rule-based
information retrieval (IR) activity relying on
keyword matching, IPC/CPC code filtering,
Boolean queries, and citation tracing. Early
systems operated under the premise that users
possessed sufficient domain expertise to
formulate accurate search queries. A common
issue with these tools is that they typically
achieve high recall but low precision, imposing a
heavy manual filtering burden on users (Verma
& Varma, 2011).

The limitations of traditional patent search
systems are well-documented in academic
literature. One of the main challenges is
semantic ambiguity, which stems from the
presence of multiple technical synonyms and
homonyms in patent texts. For example, terms
like “lithium-ion battery” and “Li-ion battery”
refer to identical technologies, yet may be
overlooked under basic keyword matching
schemes. Moreover, while IPC/CPC
classification codes are standardized, they can
oversimplify complex technological domains; a

single classification code may encompass
various  sub-technologies ~ with  distinct
applications, leading to imprecise retrieval

results (Song & Luo, 2017). More critically,
traditional methods often fail to interpret
stakeholder intent, treating all users = search
needs uniformly, regardless of their specific
strategic objectives (Magdy & Jones, 2011).

Subsequent improvements, such as semantic
expansion using natural language processing
(NLP) techniques, have alleviated some of these
issues. For example, integrating word sense
disambiguation algorithms can reduce semantic
ambiguity to a certain extent. However, these
enhanced models still fail to adapt results to the
distinct objectives of enterprises, researchers,
and legal professionals. It has been noted that a
retrieval system aimed at technical R&D might
entirely miss out on crucial litigation risk
information essential for patent attorneys,
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thereby underscoring the structural deficiencies
of traditional uniform retrieval frameworks
(Mahdabi & Crestani, 2014).

2.1.2 Content-Based Patent Recommendation
Content-based recommenders have made strides
beyond traditional retrieval methods by
comparing user query profiles with patent text
content. These systems leverage techniques such
as TF-IDF, topic modeling (e.g., Latent
Dirichlet Allocation), and word embeddings,
which facilitate enhanced textual similarity
capture and yield higher precision than keyword-
based approaches, particularly within the field of
computer technology (Zarrinkalam & Kahani,
2013).

Nevertheless, content-based methods have
significant limitations in patent recommendation
scenarios. First, they cannot effectively model
legal importance, such as the stability of patent
claims or litigation potential. Second, economic
value dimensions, including licensing potential
and assignee market influence, are beyond the
scope of textual similarity analysis (Lee, 2020).
Third, these methods still fail to incorporate
stakeholder-specific decision goals. For example,
they typically cannot differentiate patents with
high commercialization potential, which are of
greater interest to enterprises (Lee & Hsiang,
2020).

Even advanced deep learning models like
PatentBERT, which are pre-trained on patent
corpora, have limitations. While they outperform
traditional NLP methods in capturing technical
semantics, they still lack the ability to interpret
non-textual value attributes. For example, a
PatentBERT-based recommendation system may
recommend a patent with high textual similarity
to a target but overlook its history of licensing
failures or frequent litigation—information that
is vital for users from enterprise backgrounds
(Freunek & Bodmer, 2021).

2.1.3  Collaborative  Filtering
Interaction Models

Collaborative filtering (CF) models differ from
content-based methods by tracking user—patent
interaction data (e.g., downloads, citations,
favorites) to infer user preferences and generate
recommendations. Early applications of CF in
patent recommendation, particularly exemplified
by systems utilized for corporate R&D
predictive analytics, centered around citation
networks to identify patents that are frequently
cited together, thus achieving some success in
predicting technology trends Song & Luo (2017).

and User
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However, CF faces three fundamental
limitations in patent analytics that have been
widely discussed in the literature. The first is
sparse  interactions:  unlike  e-commerce
platforms where users explicitly rate products,
most patent database users do not provide
explicit feedback, and implicit interactions (e.g.,
downloads) are also sparse for niche technical
fields (Mediani, 2022). The second is the cold
start problem: new patents lack interaction
history, making it impossible for CF models to
recommend them, which is particularly
problematic for emerging technology fields
where new patents are most valuable (Verma &
Varma, 2011). The third and most critical
limitation is the uniform preference assumption:
CF models implicitly assume that users with
similar interaction patterns have identical
objectives, ignoring stakeholder heterogeneity.
For example, while both litigation attorneys and
R&D engineers may download the same patent
related to semiconductor materials, the former
focuses on its claim validity, whereas the latter is
concerned with its technical implementation. CF
models typically cannot distinguish between
these distinct needs (Staresini¢ & Boh, 2009).

To address these issues, hybrid CF models that
integrate content features have been proposed.
However, these models still do not solve the core
problem of stakeholder preference
differentiation, as their personalization is based
on interaction patterns rather than explicit
strategic objectives (Stoffels et al., 2020).

2.1.4 Hybrid and Knowledge-Based Patent
Systems

Recent hybrid systems have incorporated
semantic structure information, such as citation
graphs, inventor networks, and classification
codes, to address the limitations of single-
content or interaction-based models (Wang et
al.,2013). Graph-based ranking methods, such as
PageRank variants applied to citation graphs,
have been effective in detecting technical
authority.

A key insight from recent research is the
misclassification of “value” in  patent
recommendation. Most current systems over-
prioritize technical centrality (e.g., citation
frequency, technical similarity) while neglecting
critical non-technical factors. A  survey
conducted among U.S. manufacturing firms
revealed that patent commercialization value is
more strongly correlated with licensing history
and market size than with citation count (Priya
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& Vadivel, 2012). In a similar vein, a legal-
economic analysis demonstrated that patent
enforceability, a vital legal value dimension, has
no significant correlation with technical
similarity (Aleman-Meza et al., 2005). This
structural ~ disconnect  between  technical
similarity and stakeholder relevance underscores
the urgent need for differentiated multi-subject
modeling in patent analytics.

2.2 Knowledge Graphs and Graph Neural
Networks for Patent Analytics

2.2.1 GNNs in Recommender Systems

Graph Neural Networks (GNNs) have become
the state-of-the-art approach for KG-based
recommendation, as they can propagate feature
signals through relational neighborhoods to
generate node embeddings that capture both
attribute and structural information (Scrivano,
2025). A systematic review on GNN
applications in recommendation underscores
their advantages over traditional graph-based
methods, reporting performance improvements
in precision metrics by 15% to 25% because of
GNNs' capability to capture latent relational
semantics (Wu et al., 2020).

In patent analytics, GNNs excel at modeling
complex technical relationships intrinsic to
heterogeneous patent networks. A study
integrating various relations, such as citation, co-
invention, and technology associations, has
demonstrated how GNN-generated patent
embeddings can outperform traditional text
embeddings like BERT in technical similarity
matching, with reported improvements in
accuracy (Nguyen et al., 2022). Further, GNNs
have been applied in legal risk analysis, where
incorporating litigation relational information
has improved patent infringement prediction
accuracy significantly when compared to models
relying solely on textual data (Liu et al., 2018).
However, a critical limitation exists within
current GNN-based patent recommenders: the
lack of demand awareness. These models
operate under the assumption that node
embeddings serve as universal indicators of
recommendation value, conflating technical
proximity with stakeholder relevance. This is
particularly evident in studies on patent licensing,
where patents closely related in technical terms
might possess negligible licensing value or
potentially high litigation risks—factors that are
pivotal for enterprises and legal professionals
alike (Lai et al., 2008). This “one-size-fits-all”
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approach fails to accommodate the diverse value

perceptions held by different stakeholders,
thereby undermining the effectiveness of
recommendations  based on  generalized

embeddings (Lai et al., 2008).

2.2.2 Patent Knowledge Graph Applications
Recent studies have applied Knowledge Graphs
(KGs) to wvarious patent analytics tasks,
achieving promising results but still lacking
multi-subject consideration (Du et al., 2021). For
instance, one investigation employed a hybrid
KG for technology evolution analysis,
pinpointing key transition points in battery
technology by examining changes in the patent-
technologist-assignee relationship (Chen &
Deng, 2023).

However, despite these advances, current patent
KGs rarely incorporate market and legal
attribute information into their core structure.
For example, litigation history—an important
factor affecting patent enforceability—is often
treated as auxiliary metadata rather than being
integrated into the KG as relational nodes.
Similarly, licensing transaction data, such as
royalty rates and licensee types, which directly
reflect commercial value, are seldom utilized as
node attributes to enhance embedding learning
(Mauleén et al.,, 2013). This gap raises
significant concerns given the increasing
importance placed on comprehensive data in
patent analytics.

Several empirical studies have highlighted the
consequences of this oversight. For instance, a
study highlighted that significant numbers of
recommendations from KG-based systems were
deemed irrelevant by enterprise users due to the
neglect of licensing potential (Osterman, 2018).
This conclusion mirrors findings in related work,
where GNN-based patent retrieval systems failed
to prioritize patents with stable claims—a crucial
aspect for attorneys—because claim stability
attributes were not adequately embedded in the
KG (Lin, 2011). These findings reflect current
challenges while confirming the necessity to
enrich patent KGs with demand-related
attributes and develop GNN models aware of
these specific demands.

2.3 Multi-Stakeholder Decision Support in
Information Systems

2.3.1 Stakeholder Heterogeneity

Academic literature has long recognized that
different user groups have conflicting and multi-
objective decision preferences, necessitating
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personalized systems that adapt to these
heterogeneous needs Zhao et al. (2025). This
principle is particularly applicable to patent
analytics, where stakeholders possess distinct
strategic goals that are deeply rooted in their
organizational roles and responsibilities.
Treating these distinct stakeholders as identical
"users" contradicts personalization theory and
results in suboptimal decision support outcomes.
Notably, while multi-stakeholder decision-
making has been well explored in general
information systems, its application in patent
recommendation remains fragmented; most
existing patent recommenders either ignore
stakeholder heterogeneity entirely or adopt
simplistic preference modeling that fails to
capture the multi-dimensional nature of patent
value. Overlooking preference heterogeneity can
significantly reduce system utility in high-stakes
decision environments like patent management,
where the consequences of  poor
recommendations can be dire. This utility loss is
particularly costly in patent scenarios, where
ineffective recommendations may lead to missed
commercial  opportunities, wasted R&D
investments, or the potential for costly litigation.
2.3.2 Decision Weighting Models

Multi-criteria decision-making (MCDM)
methods provide a theoretical backbone for
quantifying heterogeneous stakeholder
preferences, with the Analytic Hierarchy Process
(AHP) and entropy weight modeling being the
most widely utilized approaches in decision-
making contexts (Dehdasht et al., 2020). AHP
effectively captures subjective expert judgments
by decomposing complex decision issues into
hierarchical criteria and employing pairwise
comparisons to determine weight priorities; this
method was originally articulated by Saaty in
1980 (Sangka & Muchsini, 2018). In the context
of patent evaluation, AHP is particularly
advantageous for capturing trade-off preferences,
such as an enterprise’s choice between “high
commercial value but high risk” and “moderate
value but low risk” patents (Maruthur et al.,
2013).

On the other hand, entropy weighting calculates
objective weights based on data variation,
helping to mitigate subjective biases in expert
judgments (Parulian et al., 2023). For instance, if
"citation count" exhibits significant variation
across a patent dataset, it will receive a higher
entropy weight. This objective weighting is
crucial for patent analytics, as it grounds expert
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judgments in actual patent data characteristics.
The hybrid AHP-entropy approach, combining
subjective and objective weights, has gained
traction in decision-support systems due to its
balanced performance. For example, one study
applied this hybrid method to technology
evaluation systems, finding that integrating both
approaches yielded more accurate criteria weight
results (Nyimbili & Erden, 2020). In patent
recommendation, this hybrid approach proves
particularly beneficial as it integrates expert
strategic intent (e.g., an enterprise’s focus on
commercialization) with objective data patterns
(e.g., historical licensing success rates). This
alignment is consistent with decision-support
theory, emphasizing the integration of human
judgment with data-driven insights.

3. Methodology

The proposed multi-subject differentiated patent
recommendation system is composed of three
core components: (1) stakeholder demand
modeling using a hybrid analytic hierarchy and
entropy weighting mechanism; (2) construction
of a demand-enriched patent knowledge graph
(DPKG) that integrates technical, value, and risk
semantics; and (3) a demand-weighted Graph
Neural Network (DW-GNN) that produces
differentiated patent rankings via a customized
scoring function. Together, these components
form an information system capable of adapting
patent recommendations to the objectives of
enterprises, research institutions, and patent
attorneys.

3.1 Multi-Subject Demand Modeling
Patent recommendation involves multiple
stakeholders whose priorities differ significantly.
To quantify these heterogeneous objectives, we
define a three-dimensional evaluation space:
Technical, Value, and Risk, denoted as:

We consider three stakeholder types:
= l: ,
2: )

3.
Each stakeholder evaluates patents differently
based on their core objectives, with specific
focus areas for each dimension as shown in
Table 1.
3.1.1 AHP-Based Subjective Weighting
To capture subjective expert judgments on
dimension priorities, we invited 20 experts (8
from industry, 8 from academia, 4 from IP law
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firms) to provide pairwise comparison matrices
for each stakeholder. For a given stakeholder |,
the pairwise comparison matrix () = [ i(j)
@)
ij
importance of dimension compared to . The
importance scale follows the standard AHP 1-9
scale (1: equal importance, 9: extreme
importance).

Subjective weights are derived by normalizing
the eigenvector corresponding to the maximum
eigenvalue of  ():

3x3

is constructed, where represents the relative

O —

3

=1
where is the eigenvector of the maximum
eigenvalue
3.1.2 Entropy-Based Objective Weighting
Objective weights are calculated based on the
information entropy of patent evaluation
indicators, reflecting the discriminative power of
each dimension in the dataset. First, we select
indicator variables for each dimension (Table 2)
and normalize them  using min-max
normalization to eliminate scale differences.

Table 1. Evaluation dimensions of Different stakeholders

Dimension [Enterprise Research Institution Patent Attorney
Technical |Product feasibility, Scientific novelty, technical |Claim stability, technical
manufacturing compatibility  |frontier alignment enforceability

Value Commercialization potential, |Citation impact, academic |Litigation damages
licensing revenue influence estimation, validity value

Risk Infringement exposure, market [Research complexity, Litigation probability,
competition risk resource requirement risk  claim invalidation risk

Table 2. Patent Evaluation Indicators

Dimension|Indicator Variables Data Source

Tech Novelty score, technical complexity, CPC code matching|Patent text, CPC database

Value Citation count, licensing rate, royalty rate RoyaltyStat, USPTO citation database
Risk Litigation frequency, claim invalidation rate Darts-IP, LexMachina

Let ;; denote the normalized value of indicator
forpatent ( =12,.., ; =10,000 in this
study). The information entropy of dimension
is calculated as:

== sin( )
=1
where = 1/In( ) is the normalization factor
ensuring 0 < < 1. Lower entropy indicates
higher discriminative power. The entropy weight
for dimension is:

— 1_
a0 )

3.1.3 Hybrid AHP—Entropy Weighting

Final stakeholder-specific dimension weights
combine subjective AHP weights and objective
entropy weights using a weighting coefficient A
= 0.6 (prioritizing expert strategic intent while
retaining data-driven correction). The value of A
is determined through a sensitivity analysis: we
tested A values in the range [0.4, 0.8] at 0.1
intervals, evaluating F1@10 performance across

all stakeholder groups. Results showed A=0.6
achieved the highest average performance,
confirming it balances subjective expertise and
objective  data effectively. The weight
calculation formula is:

O = O) +(1-)
where ():[ (), O , ()] is the

weight vector for stakeholder .

3.2 Demand-Enriched Patent Knowledge
Graph (DPKG)

The DPKG extends traditional patent KGs by
integrating stakeholder demand nodes and multi-
dimensional attribute information, enabling
demand-aware semantic reasoning. Its schema
includes entity categories, semantic relations,
and node attributes as follows:

3.2.1 Entity Categories

Seven core entity types are defined to cover
technical, economic, legal, and stakeholder
dimensions:

Table 3. Entity Categories

Type Examples Attribute Description

Patent USPTO/CNIPA filings, PCT applications |Application number, publication date,
abstract, claims

Technology Named concepts, CPC labels, technical  [Technical field, novelty score,
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terms complexity level

Assignee Firms, universities, research institutions |Industry sector, market share, R&D
investment

Litigation Court cases, infringement claims Outcome (win/loss), claim at issue,
court jurisdiction

Licensing Transaction records, royalty agreements |[Royalty rate, licensee type, transaction
date

Stakeholder Enterprise, research institution, attorney  Type, industry, weight vector O

Demand Dimension(Technical, Value, Risk Indicator variables, weight range

3.2.2 Semantic Relations
Eleven relational types are defined to connect

entities and capture multi-dimensional semantics,

with particular emphasis on demand-relevant
relations:

Table 4. Relation Types

Relation Source Entity — Target Entity Semantic Meaning

cites Patent — Patent Patent references prior art

involves Patent — Technology Patent covers specific technology
owned by Patent — Assignee Patent is assigned to an organization

litigated in Patent — Litigation

Patent was involved in litigation

licensed via Patent — Licensing

Patent was licensed through a transaction

focuses on Stakeholder — Demand Dimension | Stakeholder prioritizes specific dimension
relevant to Patent — Demand Dimension Patent has performance on dimension
develops Assignee — Technology Assignee specializes in technology
represents Technology — Demand Dimension | Technology contributes to dimension
participates in | Assignee — Litigation Assignee was party to litigation

engages in Assignee — Licensing Assignee participated in licensing

3.2.3 Node Attributes

Node attributes are designed to capture
dimension-specific performance, serving as the
basis for demand weighting. Key attributes
include:

*Technical attributes: Novelty score (calculated
via semantic distance to existing patents),
technical complexity (based on claim length and
jargon density), CPC matching degree (to
stakeholder’s technical focus)

*Value attributes: Citation count (5-year
window), licensing rate (number of licenses /
total available), royalty rate (average for similar
patents), assignee market influence (industry
ranking)

*Risk attributes: Litigation frequency (number of
cases involving the patent), claim invalidation
rate (historical invalidation probability for
similar claims), infringement similarity (to
active patents)

These attributes are normalized and stored as
node feature vectors, which are used to calculate
relevance scores during GNN propagation.

3.3 Demand-Weighted Graph Neural
Network (DW-GNN)

The DW-GNN modifies the standard
GraphSAGE model to incorporate stakeholder
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demand weights into node embedding learning
and ranking. The process includes representation
learning with demand-weighted aggregation and
multi-objective scoring for differentiated ranking.
3.3.1 Representation Learning with Demand-
Weighted Aggregation

We use a 3-layer GraphSAGE model where each
layer aggregates neighbor information with
weights proportional to stakeholder demand

relevance. Let denote the embedding
ofnode atlayer (inputlayer = O uses node
attributes as  initial embeddings). The
aggregation process for layer + 1 is:

(+D) _ O O O

)

where:
. O 2 is the weight matrix for layer ;

¢ () is the ReLU activation function;

e () is the neighbor set of node ;

»  is the demand-weighted aggregation
coefficient for neighbor relative to stakeholder

The aggregation coefficient is calculated

based on the relevance of node to the
stakeholder’s demand dimensions and
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normalized to ensure sum-to-one:

(@] ()
@) ¢ ()

where () is the normalized performance

score of node on dimension

For example, when processing an enterprise
stakeholder (high O ), the model will assign
higher aggregation weights to neighbor nodes
with high value scores (e.g., patents with high
licensing rates, assignees with strong market
influence). Conversely, for patent attorneys
(high ) ), neighbors linked to litigation
cases or with high invalidation rates will be
weighted more heavily to capture risk-related
signals. This demand-aware aggregation ensures

that the final node embeddings ®) (output of

the 3rd layer) encode stakeholder-specific
relevance.

3.3.2 Multi-Objective Scoring for Differentiated
Ranking

After obtaining demand-weighted embeddings
for all patent nodes, we define a multi-objective
scoring function that combines dimension-
specific relevance scores with stakeholder
weights to generate personalized rankings. Let
denote the query patent (or stakeholder’s
technical focus patent), and denote a candidate
patent for recommendation. The scoring function
for stakeholder is:

(.)
= (, )+ ()+
¢.)
where , , are coefficients mapped from the

stakeholder's dimension weight vector 0. =

(), = O , =— O (negative sign

indicates risk as a penalty). Patents are ranked in
descending order of Score( , ) to generate
stakeholder-specific recommendations.

(. )=—/———

4. Experimental Evaluation
To validate the effectiveness of the proposed

Multi-Subject Differentiated Patent
Recommendation Algorithm (DW-GNN), we
conducted a comprehensive experimental

evaluation.

4.1 Dataset Construction and Preprocessing
A high-quality, representative dataset was
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constructed to validate the algorithm, following
a standardized process encompassing data
collection, preprocessing, and stakeholder
profile calibration.

4.1.1 Patent Corpus Construction

A patent corpus was collected from InnoCity (a
patent licensing platform in China) covering
recent years, with samples selected from
multiple high-innovation industries to ensure

diverse technical characteristics. The core
construction process included: (1) Data
collection: Extracting key patent attributes

including text content, citation relationships,
value-related records, and risk-related data; (2)

Preprocessing:  Conducting text cleaning
(removing boilerplate and noise), entity
normalization  (unifying  assignee/inventor

names), entity linking (connecting patents to
external knowledge bases), and attribute
normalization (standardizing numerical
indicators); (3) Feature engineering: Calculating
technical novelty scores based on semantic
distance to prior art in the same technical field.
4.1.2 Stakeholder Profile Construction

Authentic stakeholder profiles were built by
collaborating with real practitioners across three
groups (enterprises, research institutions, patent
attorneys). The process included: (1) Demand
data collection: Integrating explicit demands and
implicit demands; (2) Weight calculation:
Applying the hybrid AHP-entropy method to
generate stakeholder-specific weight vectors for
the three dimensions (Technical, Value, Risk).

4.2 Baseline Models

Four representative baseline models are selected
for comparison to verify DW-GNN's
effectiveness, with their core principles briefly
described as follows:

®Content-Based (CB) Model: A classic content-
based method that realizes recommendation
through patent text semantic similarity matching.
It extracts features via TF-IDF and PatentBERT,
then calculates cosine similarity between query
and candidate patents for ranking.
®(ollaborative Filtering (CF) Model: An
interaction-based method that infers preferences
from user-patent interaction data (downloads,
citations). It uses matrix factorization to mine
latent features and generate recommendations.
O®KG-Base Model: A KG-based benchmark that
constructs a patent KG (patents, inventors, etc.)
and uses standard GraphSAGE to aggregate
neighbor information for patent embedding, then
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recommends based on embedding similarity.
®Single-Subject Model: An improved model
based on KG-Base that introduces fixed
personalized weights into GraphSAGE for
embedding learning and recommendation.

4.3 Results and Analysis

Focus on ranking quality and relevance, we
calculated for Topl0 recommendations. Three
widely used metrics (precision, recall, and F1-
score) has been employed to assess the
recommendation performance. Experimental
results (Table 5) confirm the superiority of the
proposed DW-GNN over baseline models. DW-
GNN achieves 0.50 in Precision@10, 0.45 in
Recall@10, and 0.47 in F1@10, outperforming
the second-ranked Single-Subject model by
11.11%, 21.62%, and 16.63% respectively. This
indicates that demand-aware design significantly
enhances both ranking precision and coverage of
relevant patents. Among baselines, KG-Base
outperforms Content-Based (CB) and
Collaborative Filtering (CF), suggesting that
knowledge graph structures better capture
relational semantics beyond isolated textual or
interaction signals. The marginal improvement
of Single-Subject over KG-Base (7.14% in
Precision@10) further proves that fixed weight
adjustment fails to address heterogeneous
demands, highlighting the necessity of dynamic
demand weighting.

Table 5. Comparative Results Across Models

Model Precision@10Recall@10F1@10
CF 0.35 0.28 0.31
CB 0.38 0.30 0.34
KG-Base 0.42 0.35 0.38
Single-Subject 0.45 0.37 0.41
Proposed DW-
GNN 0.50 0.45 0.47

5. Discussion and Conclusion

To address the core limitation of traditional
patent recommendation  systems—ignoring
heterogeneous demands of enterprises, research
institutions, and patent attorneys—this study
proposes a demand-weighted graph neural
network (DW-GNN) integrated with a demand-
enriched knowledge graph. The research
constructs a  stakeholder-oriented  patent
analytics framework that bridges technical
reasoning and personalized decision support.
The core contributions are threefold.
Methodologically, we define a Technical-Value-

Copyright @ STEMM Institute Press

Risk demand framework, quantify stakeholder-
specific weights via hybrid AHP-entropy method,
and design a schema integrating technical, legal,
and market entities. The DW-GNN model
embeds demand weights into neighbor
aggregation and adopts a multi-objective scoring
function to generate differentiated rankings.
Theoretically, this study enriches personalized
recommendation theory by proposing a demand-
aware knowledge graph reasoning paradigm,
addressing the "one-size-fits-all" defect of
existing GNN-based methods. Practically, the
algorithm provides targeted support for different

scenarios: enterprises benefit from
commercialization-oriented recommendations,
research institutions from novelty-focused

screening, and attorneys from risk-adjusted prior
art search. This work advances patent analytics
from technical retrieval to strategic decision
support, offering actionable tools for innovation
management and intellectual property practice.
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