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Abstract: With the rapid advancement of new
energy technologies, lithium-ion batteries as
core energy storage components have been
widely adopted in electric vehicles, portable
devices, and energy storage systems,
becoming a vital component of modern
energy solutions. However, surface defects in
lithium-ion batteries significantly compromise
their performance, lifespan, and safety-
particularly  under  high-energy-density
conditions and frequent usage scenarios
where these defects may trigger short circuits,
overheating, or even explosions. Current
traditional detection methods for lithium-ion
battery surface defects primarily rely on
manual inspection or conventional computer
vision technologies. These approaches
demonstrate notable limitations in precision
and efficiency, especially when handling
various defect types and performing complex
defect detection in intricate scenarios. To
address the challenges in surface defect
detection of lithium Dbatteries, this study
proposes an intelligent detection algorithm
based on multimodal deep learning. We have
designed and implemented an innovative
model framework that combines image
processing with text analysis to
comprehensively improve the accuracy and
robustness of defect detection. This method
utilizes deep learning models to extract visual
features of surface defects and incorporates
defect-related  textual  descriptions as
auxiliary information, significantly enhancing
the precision in identifying and localizing
various types of defects. Experimental results
show that the proposed detection algorithm
achieves an accuracy of 95.6%, representing a
significant performance improvement over
existing methods, especially demonstrating
strong adaptability and generalization
capability in complex scenarios. This research
not only provides an efficient and precise
technical solution for defect detection in
lithium battery production but also offers
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important theoretical and methodological
support for other industrial defect detection
tasks.
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1. The Purpose and Significance of the Topic
Selection

1.1 Research Background

With the global demand for new energy
technologies growing steadily, lithium batteries-
as core energy storage components-have been
widely adopted in electric vehicles, portable
devices, and energy storage systems, emerging
as a pivotal element in modern energy solutions.
The rapid advancement of electric vehicles and
renewable energy technologies in recent years
has further fueled the surge in demand for
lithium battery applications.[! Lithium batteries
have become the core driving technology for
electric  vehicles, smart hardware, home
appliances and large energy storage systems due
to their advantages such as high energy density,
long cycle life, light mass and low self-discharge
ratel? However, with the increasing market
demand and the continuous expansion of
manufacturing scale, quality control problems in
lithium Dbattery production have gradually
emerged, especially in the production of high
energy density batteries, where surface defects
are particularly prominent. These defects may
have a direct and serious impact on the overall
performance and safety of batteries.[’!

There are many kinds of surface defects of
lithium battery, including but not limited to
scratches, dents, bright spots, decarbonization,
bubbles, metal leakage, etc. These defects not
only affect the electrochemical performance of
the battery (such as capacity, charge and
discharge efficiency, cycle life, etc.), but also
may cause serious safety risks such as thermal
runaway, short circuit or even battery
explosion.”) The emergence of surface defects
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on batteries, particularly in critical applications
like electric vehicles and energy storage systems,
poses serious risks to user safety, equipment
reliability, and environmental protection. In
high-density and high-energy battery systems,
localized temperature spikes caused by surface
defects may trigger thermal runaway, potentially
leading to severe safety incidents.l>7! Therefore,
ensuring the integrity of the battery surface,
timely detection and accurate positioning of
these defects is one of the core issues to ensure
the safe operation of batteries.

In recent years, with the continuous optimization
of manufacturing processes, surface defect
detection in lithium batteries has gradually
become an important part of lithium battery
production. Traditional defect detection methods
mainly rely on manual visual inspection and
automated detection technologies based on
traditional image processing.®) While manual
inspection can achieve initial defect detection, its
reliance on human expertise results in low
efficiency, poor accuracy, and difficulty meeting
the high-efficiency demands of mass production.
Traditional 1image processing-based defect
detection methods, though effective in specific
scenarios, often depend on image quality,
lighting conditions, and predefined feature
extraction rules. This makes them prone to
limitations when dealing with various complex
environments and diverse defects.1%]

In view of the limitations of traditional detection
methods, deep learning technology, especially
convolutional neural network (CNN), has made
remarkable breakthroughs in the field of image
processing in recent years!'!! Deep learning
methods can automatically learn efficient and
abstract features from a large amount of data,
overcome the difficulties of manual feature
extraction, and have strong adaptability and
generalization ability!'?l However, single-image
data still falls short in handling complex defects,
particularly when dealing with subtle, blurry, or
indistinguishable flaws against the background.
In such cases, image information alone may lack
sufficient diagnostic evidence. Consequently,
multimodal deep learning technology has
emerged as a crucial solution in recent years. By
integrating multiple information sources like
images and text, this approach significantly
enhances detection accuracy and robustness.[!*]
In the task of surface defect detection of lithium
battery, the combination of image mode and text
mode can effectively make up for the deficiency
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of single mode!'¥ Image data can provide visual
information of surface defects, while text data
contains descriptive information such as defect
type, size and location. Especially in describing
complex or small defects, text information can
provide valuable contextual support for the
model! Through the multimodal deep learning
model, it can comprehensively utilize the
detailed information in the image and the
semantic information in the text to achieve more
accurate and efficient defect detection and
localization in different defect types and
complex production environments.

The research on surface defect detection of
lithium battery based on multi-modal deep
learning can effectively improve the automation
level of the defect detection system, reduce the
need for manual intervention, reduce production
costs, and greatly improve the accuracy and
consistency of detection'® While ensuring
battery quality, this approach also provides
robust technical safeguards for lithium battery
safety. As the lithium battery market continues
to expand and technology advances, deep
learning-based multimodal defect detection
technology is increasingly becoming an
indispensable core component in lithium battery
production processes.

1.2 Research Status of Defect Detection

1.2.1 Traditional defect detection

In the field of defect detection, traditional
methods and modern machine learning
techniques each have their own advantages and
are suitable for different application scenarios.
Traditional image processing methods rely on
inherent image features such as edges, textures,
shapes, and gray-level variations to achieve
defect detection. For example, Jia et al.l'’l An
automatic fabric defect detection method based
on lattice segmentation and template statistics is
proposed, which achieves a detection rate of up
to 97% by comparing the similarity between the
lattice and statistical templates. Kumari et all'®]
A defect detection method based on Sylvester
matrix similarity estimation is developed. The
test image is aligned with the reference image
through geometric transformation and image
resampling, and the detection is carried out by
comparing the rank of Sylvester matrix. Qiu et
al”l A defect detection method suitable for non-
uniform illumination is proposed, which
combines significance detection with inherent
image decomposition to effectively improve the
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detection accuracy of low-contrast defects.
Zhang et al® The proposed CrackNet defect
detection method, which consists of four layers
of convolutional layers with the same width and
height dimensions but different channel numbers,
outputs pixel-level defect detection results; Yu et
al?l Two full convolutional FCN networks are
used for defect detection. The first FCN network
is responsible for coarse inference of defect
location, and the second FCN network is
responsible for refinement of defect detection
results. The algorithm is verified in the defect
data set.

With the development of technology, machine
learning methods have been gradually
introduced into defect detection, especially the
support vector machine (SVM) method. Due to
its powerful feature learning and classification
ability, it has become one of the research
hotspots. For example, Song et all*’l The MCITF
algorithm is proposed to combine the improved
texture features with Laplacian regularization
technology. Through superpixel segmentation
and saliency map generation, background
interference is effectively reduced and the
accuracy of surface defect detection on steel
strip is significantly improved. Zhou et al?3! The
WR-IFOA-SVM method is proposed, which
combines u-LBP and GLCM texture features,
and further improves the accuracy of wire rope
surface defect detection by optimizing SVM
parameters.

1.2.2 Defect detection based on deep learning
The current research trend is to combine deep
learning with traditional machine learning to
compensate for the limitations of a single
approach. Singh et all>l By integrating a pre-
trained ResNet-101  convolutional neural
network (CNN) with multiple support vector

machines (SVMs), this hybrid approach
effectively detects defects in mnon-grinding
processes through data augmentation and

network layer activation analysis. This method
not only reduces dependence on extensive
training datasets but also significantly enhances
detection efficiency and accuracy. Deep
learning-based defect detection has become one
of the most widely adopted technologies in
lithium battery surface inspection, primarily
categorized into three types: region candidate-
based target detection methods, regression-based
target detection methods, and search-based
target detection methods [226  Region
candidate-based detection methods include R-
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CNNE7 FastR-CNNP8 FasterR-CNNI?°! and
MaskR-CNNB% These methods achieve target
detection and localization by extracting
candidate regions and then classifying and
bordering each candidate region. Lu et all*'l A
real-time defect detection and closed-loop
adjustment method based on deep learning is
proposed, using FasterR-CNN, SSD and
YOLOv4 models to detect fiber path
misalignment and wear in the printing process in
real time. The average accuracy (mAP) of the
three algorithms is 73.28%,65.29% and 90.42%
respectively. Zhang et all*?l An improved Faster
R-CNN method is proposed for defect detection
in 3D printed lattice structures. An efficient
defect detection model is constructed by K-
medoids algorithm, adaptive anchor selection
based on Manhattan distance, data enhancement
and fine-tuning strategies. Experimental results
show that the average accuracy of the model
reaches 93.4% in defect detection.

The improved MaskR-CNN algorithm has made
significant progress in the field of defect
detection. Xia et al®® An improved surface
defect detection method has been proposed by
integrating a CBAM attention module into the
Region Proposal Network (RPN) and combining
it with a Path Aggregation Feature Pyramid
Network (FPN), effectively fusing multi-level
features. The method achieves 90% accuracy on
defect datasets, demonstrating superior detection
performance compared to traditional approaches.
Xu et al.B4 Surface defect detection is carried
out based on the enhanced MaskR-CNN,
especially by introducing a path-enhanced
feature pyramid network and edge detection
branch into the network. Compared with the
traditional computer vision method based on
manual features, the detection accuracy and
effect are significantly improved. Wang et al33
Then, a new multi-scale fusion feature pyramid
structure is designed to optimize the MaskR-
CNN network, and the traditional IoU is
replaced by the full intersection and union ratio
(IoU). In the experiment, the average accuracy is
98.70%, which further improves the accuracy of
defect detection.

As an end-to-end regression target detection
method, YOLO series model has been widely
used in defect detection tasks(*®) This method
can detect targets efficiently by dividing input
images into grid cells and returning the existence,
position and category of targets in each cell.
Yuan et al® A novel PCB surface defect
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detection method (YOLO-HMC) based on an
enhanced version of YOLOvS5 has been
proposed. By integrating the HorNet architecture
and MCBAM to boost feature extraction and
defect localization capabilities, combined with

CARAFE technology to optimize the
upsampling layer, the system significantly
enhances 1image information aggregation.

Through optimized detection head design, the
model parameters are reduced, achieving an
average precision of 98.6% in PCB defect
detection. Zhang et al.*¥ Based on YOLOV3, the
K-medoids clustering algorithm and super-
resolution convolutional neural network were
used to significantly improve the recognition
ability of small defects, and the average
accuracy of 94.55% was achieved in the final
experiment. Qian et al®® By integrating
ShuffleNetv2 into the feature extractor and
introducing a lightweight feature pyramid
network, the parameter quantity of YOLO model
was successfully reduced while improving the
efficiency of multi-scale feature fusion,
achieving an average accuracy of 79.23% on
NEU-DET dataset. Wen et all*® The YOLOv7
model has been enhanced by incorporating the
Convolution Block Attention Module (CBAM)
and Adaptive Spatial Feature Fusion (ASFF)
techniques. These improvements enable the
model to better capture image details and fuse
features across multiple scales. When tested on
the FCC and BCC-FCC datasets, the accuracy
rate reached 96.9%, representing a 2.4%
improvement over the original model. Jiang et
al.*l The K-Means++ algorithm is used to
optimize the anchor box, which -effectively
alleviates the problem of imbalance between
defect aspect ratio, and a new attention module
combining maximum pooling and average
pooling is proposed to improve the detection
accuracy of small defects.

In defect detection, supervised learning methods
often demonstrate limited effectiveness, while
unsupervised and weakly supervised learning
approaches show tremendous potential. However,
in industrial applications, the high cost of
obtaining labeled data typically makes it difficult
to acquire sufficient defect samples for
training.[*?! In order to overcome this challenge,
transfer learning has been widely studied as an
effective  solution. Badmos et all*¥l By
comparing the defect detection methods of
transfer learning and non-transfer learning, the
experiment shows that the transfer learning
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based detection method achieves 99% F1 index,
significantly better than the method without
transfer learning. Damacharla et al*! When
training with the U-net framework, we compared
defect detection performance between pre-
trained and untrained models using ImageNet.
Results demonstrated that the transfer learning-
based model achieved 26% higher accuracy on
our self-built dataset compared to non-transfer
learning counterparts. These findings highlight
the effectiveness of transfer learning in defect
detection, particularly valuable for industrial
applications where annotated data is scarce.

1.2.3 Defect detection with multimodal feature
fusion

In recent years, with the rapid development of
deep learning and computer vision technologies,
multimodal learning has gained increasing
attention in defect detection applications. The
core concept of multimodal feature fusion lies in
effectively integrating information from various
modalities (such as images, text, sensor data, etc.)
to enhance models' capability in detecting
complex defects.[*! Traditional single-modal
defect detection methods typically rely on
analyzing only one type of feature, which limits
their performance in complex scenarios. In
contrast, multimodal feature fusion effectively
combines the strengths of multiple information
sources, thereby overcoming the limitations of
single-modal data.[**¥ Recent studies have
shown that combining images with other types
of data (such as sound, temperature sensor data,
etc.) can significantly improve the accuracy and
robustness of defect detection.

Research on multimodal feature fusion has made
significant progress in many fields. Lu et al*! A
defect detection method combining multimodal
fusion convolutional neural networks with cross-
attention mechanisms has been proposed.
Through feature extraction, fusion, and defect
analysis modules, the accuracy of defect
detection is significantly improved. Asad et al. 3
developed the 2M3DF network that integrates
multi-view RGB images and point cloud
information, effectively enhancing 3D industrial
defect detection performance. Experimental
results demonstrate that this network achieves
outstanding  detection  capabilities = while
providing real-time outputs. Cheng et al. [l
introduced BatteryGPT-a multimodal large
language model (MLLM)-based lithium-ion
battery defect detection system. By integrating
image encoders, text encoders, and a large
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language model, the method detects anomalies in
battery images using minimal normal samples.
Experimental results show BatteryGPT achieves
an AUC value of 96.49% in battery defect
detection, surpassing existing models CutPaste
and SCADN, thus offering a more efficient
solution for battery inspection. Feng et al. [l
proposed a novel image-text multimodal fusion
deep learning network to improve insulator
defect detection accuracy. This approach
combines text and image data through a

transformer framework with six attention
mechanisms, integrates feature  pyramid
networks for multi-scale image feature

extraction, and enhances color features via
feature differentiation and principal component
analysis to capture details and contextual
information. Simultaneously, the proposed
method employs the WordPiece approach for
text  processing. Experimental results
demonstrate that the proposed method
significantly enhances accuracy and robustness
in complex environments, with recall rates 14%
to 31.7% higher than traditional methods. Zhai et
al. 531 developed a novel One-Stage MFFNet for
pavement crack detection, which integrates
boundary box coordinates and mask information
to improve detection accuracy and segmentation
integrity. Experimental results on self-collected
datasets and public datasets (CFD and
CRACKS500) show that MFFNet achieves 2.6%
higher detection accuracy and 4.7% better
segmentation accuracy compared to Mask R-
CNN, while outperforming the optimized
RDSNet model by 1.8% in detection accuracy
and 2FPS in processing speed. The experimental
results indicate that MFFNet demonstrates
optimal performance in both detection and
segmentation accuracy, making it a high-
precision pavement crack detection model.

1.3 The Main Research Content of This
Subject

The primary objective of this research is to
develop a lithium battery surface defect
detection algorithm based on multimodal deep
learning. By integrating image and text
information, the algorithm aims to achieve
efficient and accurate identification and
localization of various surface defects in lithium
batteries. This system can detect and locate
typical defects including scratches, depressions,
bright spots, decarburization, bubbles, and metal
leakage, meeting the stringent requirements for
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defect detection in lithium battery manufacturing.
Additionally, the project explores methods to
enhance model robustness under limited or zero
samples, enabling stronger generalization
capabilities to handle previously unseen defect
types and achieve rapid response to anomalies.
The research on lithium battery surface defect
detection algorithm based on multimodal deep
learning consists of four parts. First, the
construction of a lithium battery surface defect
dataset. Second, the development of multimodal
feature fusion methods. Third, the design and
optimization of deep learning models. Fourth,
model evaluation and application verification.
These parts are carried out in sequence, forming
a complete research process for lithium battery
surface defect detection.

The main work of this paper is divided into the
following three aspects:

Construction of lithium battery surface defect
data set: Collect and collate the image data set of
lithium battery surface containing various defect
types. The data is collected by industrial CCD
camera and annotated with text description to
ensure the comprehensiveness and diversity of
the data set;

Research on Multimodal Feature Fusion
Methods: A key focus of this study is the design
and optimization of multimodal feature fusion
approaches. Since images and text data originate
from different modalities and each contain
distinct semantic information, relying on a single
modality proves insufficient for complex defect
detection. To address this challenge, the research
will explore multimodal feature interaction
mechanisms and develop an effective cross-
modal fusion method. This approach will
organically integrate image features with text
features, achieving efficient fusion of both visual
and textual information through deep neural
networks.

Design and Optimization of Deep Learning
Models: This research focuses on developing
and refining deep learning models for lithium
battery surface defect detection. By leveraging
advanced architectures such as CNN and
Transformers, we explore how to enhance
detection accuracy and robustness through
integrated modeling of image and text features.
Furthermore, cutting-edge feature extraction
techniques including Feature Pyramid Networks
(FPN) are employed to improve the models
capability in detecting defects of varying sizes
and morphological configurations.
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Model Evaluation and Application Validation:
After completing the design and training of the
algorithmic model, the project will conduct
systematic ~ evaluation and  performance
verification. The assessment will be performed
through testing on both self-built datasets and
public datasets (such as MVTec-AD and VisA),
comparing the performance of different models
in defect detection. Key metrics including
detection accuracy, recall rate, and F1-score will
be evaluated, with comparisons made against
existing mainstream defect detection methods.
Ultimately, the project will validate the practical
effectiveness and application value of the
proposed method in lithium battery production
through simulated industrial scenarios.

2. Research Program

2.1 Proposed Technical Solutions

This study proposes a multi-modal deep
learning-based framework for lithium battery
surface defect detection, aiming to enhance
accuracy, localization precision, and
generalization capabilities. The framework
comprises three core modules: SPCI module,
DAEP module, and CMI module. First, the SPCI
module captures row-level and column-level
features of image block tokens to precisely
locate defects, demonstrating strong adaptability
to directional defects like linear and crack-like
patterns commonly found on lithium battery
surfaces. By enhancing spatial structure
modeling capabilities, this module improves
model performance in complex defect scenarios.

Next, the P-M module integrates global visual
features with text cues through dynamic
attention mechanisms, reducing dependence on
specific categories and boosting adaptability to
diverse anomaly types. Particularly effective for
detecting rare or unknown defects, this module
enhances practicality and scalability in real-
world applications. Finally, the CMI module
achieves deep interaction between image and
text features by capturing local details and global

context while optimizing text embedding,
significantly improving cross-modal
understanding  and  information  fusion

capabilities. This integrated approach effectively
elevates overall performance in complex. The
system achieves stable anomaly detection in
dynamic defect images. Furthermore, the
architecture is built on large-scale pre-trained
visual language models (e.g., CLIP), utilizing
image encoders and text-guided mechanisms to
enable unsupervised or zero-shot defect
detection. This approach not only applies to
lithium battery surface defect detection but also
handles multimodal data in similar industrial
inspection scenarios. Experimental verification
and comparative analysis will be conducted on
both public datasets and a self-built lithium
battery image dataset to evaluate the proposed
models accuracy, recall rate, and robustness in
practical applications. The research aims to
provide an efficient and precise solution for
defect detection in lithium battery production
processes. As illustrated in Figure 1, this
constitutes the methodology of our study.
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Figure 1. Lithium Battery Surface Defect Detection Algorithm based on Multimodal Deep
Learning
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2.2 Conditions  Required for  the
Implementation of the Plan

2.2.1 Hardware condition

The hardware requirements for this project
primarily involve configuring high-performance
computing resources and data acquisition
equipment. To ensure efficient training and
inference processes for deep learning models, it
is essential to equip them with high-performance
GPUs such as NVIDIA Tesla or RTX series
graphics cards, which accelerate model training
and enable large-scale data processing. To meet
computational demands, servers or workstations
with robust computing capabilities are
recommended.

2.2.2 Software environment

This research will utilize deep learning
frameworks such as TensorFlow or PyTorch to
develop and optimize multimodal deep learning
models, which support the integration of
complex Convolutional Neural Networks (CNNs)
with Natural Language Processing (NLP)
systems. Image data preprocessing and
augmentation serve as critical training steps,
employing tools like OpenCV or PIL for
denoising, cropping, and rotation to enhance
dataset diversity and model robustness. Textual
data will be processed through NLP tools such
as spaCy or Transformers to extract semantic
features from defect descriptions, thereby
improving the models ability to comprehend
textual information.

2.2.3 Experimental data set

The success of this research hinges on high-
quality datasets. The lithium battery surface
defect dataset was self-collected using industrial
CCD cameras for precise imaging. This
comprehensive  collection includes various
defects such as scratches, dents, bright spots,
decarburization, bubbles, and metal leaks-all
representing common surface flaws encountered
in lithium battery manufacturing. To ensure data
diversity and representativeness, every defect
type in the dataset mirrors actual production
scenarios, covering abnormalities of varying
sizes, shapes, and severity levels. This approach
provides robust training data for developing
subsequent defect detection algorithms.

2.3 Main Problems and Solutions
2.3.1 The difficulty of integrating image and text
data

In  multimodal learning,

deep effectively
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integrating image and text data remains a major
challenge. While images provide visual
information, text descriptions capture defect
characteristics and locations. The key challenge
lies in combining both approaches to enhance
detection accuracy and robustness, particularly
when dealing with complex defects or
significant background interference.

Solution: To address this challenge, this paper
proposes a multimodal fusion framework that
utilizes Convolutional Neural Networks (CNN)
for image feature extraction and Natural
Language Processing (NLP) for text information
extraction. The framework employs a deep
attention mechanism to dynamically balance the
contributions of image and text modalities, while
employing multi-level feature fusion to enhance
recognition capabilities for complex
backgrounds and defects.

2.3.2 Robustness of defect detection in complex
environments

The surface defect detection of lithium battery
may be affected by uneven illumination,
complex background and small defects, resulting
in poor robustness of traditional methods.
Especially in the production environment,
equipment and conditions change greatly, so the
detection system needs strong adaptability to
ensure stability and accuracy.

Solution: To enhance robustness, this study
implements a data augmentation strategy that
simulates diverse lighting conditions,
background variations, and defect scenarios to
improve model adaptability. By integrating CNN
and RNN, the approach leverages both image

and temporal data features to strengthen
environmental adaptation capabilities.
Furthermore,  self-supervised learning is

employed to boost generalization performance
when training with limited labeled datasets.

2.3.3 Lack of defect labeling data

The defects in the production process of lithium
battery are complex and varied, resulting in
insufficient high-quality annotated data, which
affects the training and generalization ability of
deep learning model.

Solution: To address the data scarcity issue, this
paper employs data augmentation techniques to
generate composite defect images and expand
the dataset. We further integrate transfer learning
by fine-tuning pre-trained models from other
domains.  Additionally, a self-supervised
learning strategy is implemented where the
model generates its own labels, significantly
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reducing reliance on manual annotations.
3. Expected Research Results

3.1 Expected Project Objectives and Results
The research objective of this project is to
develop an intelligent detection algorithm for
lithium battery surface defects based on
multimodal deep learning, and apply it to an
automated defect detection system in lithium
battery manufacturing. This method integrates
image and text data, leveraging deep learning
models to enhance the accuracy and robustness
of surface defect detection. The aim is to achieve
efficient, automated defect detection, reduce
manual intervention, and improve production
efficiency and quality. Specific objectives
include: improving detection accuracy through
multimodal data fusion methods, striving to
increase precision by 20% across various types
and complex backgrounds; while optimizing
model computational efficiency to enable real-
time or near-real-time detection processes in
industrial production, significantly accelerating
inspection speed.

Academic achievements:

Two SCI or EI papers: "Research on Surface
Defect Detection Algorithm of Lithium Battery
Based on Multimodal Deep Learning" and
"Application of Multimodal Deep Learning in
Industrial Defect Detection: Taking Surface
Defect Detection of lithium battery as an
example".

Two related patents: "A method for surface
defect detection of lithium battery based on
multimodal deep learning" and "A deep learning
algorithm for surface defect localization of
lithium battery".

Soft copyright: 1. "A lithium battery surface
defect detection software".

3.2 Practical Problems to be Solved

This study introduces a multimodal deep
learning approach that integrates image data
with text descriptions to develop an efficient and
accurate defect detection algorithm. The
algorithm automatically identifies and locates
various surface defects. By optimizing the
models adaptability to diverse defects, it
enhances automation levels and detection
accuracy while reducing manual intervention.
The research not only addresses limitations of
traditional detection methods but also provides
intelligent, automated solutions for lithium
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battery production quality control. This
advancement improves manufacturing efficiency
and product quality, supporting technological
innovation and industrial applications in the
battery industry.

4. Conclusions and Future Work

This research develops a multimodal deep
learning algorithm to address surface defect
detection in lithium battery production. By
combining image and text data, the study
proposes an innovative framework that
integrates visual and semantic features,
significantly improving detection accuracy and
robustness. The system can accurately identify
defects like scratches and dents, maintaining
high performance in complex environments, thus
driving automation and quality control in the
production process.

Unlike traditional methods, which rely on
manual inspection or conventional image
processing, this approach leverages CNN and
transformers to achieve precise detection, even
for minor defects. The use of data augmentation,
transfer learning, and self-supervised learning
enhances the model's generalization ability in
environments with limited data. The results
provide an efficient solution for lithium battery
defect detection and offer valuable insights for
similar industrial applications, advancing smart
manufacturing and quality control in the new
energy sector.
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