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Abstract: Diabetic retinopathy (DR), as the
most common and blinding microvascular
complication of diabetes, requires early
screening and accurate diagnosis to prevent
vision loss. Traditional diagnosis relies on
ophthalmologists manually interpreting
fundus images, which suffers from low
efficiency, high subjectivity, and uneven
resource distribution. With breakthroughs in
deep learning technology and the
accumulation of medical big data, deep
learning-based DR-assisted diagnostic
systems have shown revolutionary potential.
This paper systematically reviews the
technical path of deep learning in DR
diagnosis, including data preprocessing,
model architecture design, multimodal data
fusion, and clinical validation methods. It
analyzes its advantages in improving
diagnostic efficiency, reducing missed
diagnosis rates, and optimizing the allocation
of medical resources, and discusses the
challenges in system deployment and future
development directions. Research shows that
the combination of deep learning and medical
big data provides an innovative solution for
accurate screening and personalized
treatment of DR, with broad clinical
application prospects.
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1. Introduction
Diabetic retinopathy is one of the most common
microvascular complications of diabetes.
Approximately 30%–50% of diabetic patients
worldwide develop DR, with about 10%
potentially progressing to proliferative DR
(PDR), leading to irreversible vision loss or
even blindness. Early screening and timely
intervention are crucial for slowing DR

progression, but traditional diagnostic methods
face three major challenges:
Uneven distribution of resources: The number
of ophthalmologists worldwide is limited, and
patients in remote areas have difficulty
obtaining timely screening;
Diagnostic efficiency bottleneck: Doctors spend
a long time manually interpreting fundus images,
with an average of 5-10 minutes per image;
Subjective error: Different doctors have
different identification of lesion characteristics,
and the missed diagnosis rate of early small
lesions (such as microaneurysms) is as high as
20%-30% [1-2] .
The rise of deep learning technology has
provided new ideas for solving the above
problems. By constructing models such as
convolutional neural networks (CNN), the
system can automatically extract lesion features
from fundus images, achieving rapid DR
classification and risk assessment. Combining
labeled data from medical big data with
multimodal information (such as patient history
and biochemical indicators) significantly
improves the accuracy and generalization ability
of assisted diagnostic systems. This paper will
systematically describe the research progress of
DR assisted diagnostic systems combining deep
learning and medical big data from three aspects:
technical implementation, clinical validation,
and system deployment [3] .

2 Technical Implementation

2.1 Construction and Preprocessing of
Medical Big Data
Medical big data is the foundation for training
deep learning models. Taking DR diagnosis as
an example, the data needs to meet the
following requirements:
Multi-center annotation: The data needs to come
from fundus images taken by different medical
institutions and different equipment to cover
different races, disease stages, and imaging
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conditions. For example, the APTOS 2019
dataset contains thousands of fundus color
images taken by professional cameras and
graded and annotated by multiple
ophthalmologists, providing a high-quality
benchmark for model training [4] .
Multimodal fusion: In addition to fundus images,
integrating clinical data such as patient age,
diabetes duration, and glycated hemoglobin
(HbA1c) levels can improve the model's
predictive ability for disease progression. For
example, the DeepDR Plus system, based on
fundus images and clinical data from over
200,000 patients, has achieved personalized
predictions of DR progression risk over the next
5 years.
Data augmentation and standardization: To
address issues such as uneven illumination and
artifacts in fundus images, histogram
equalization and gamma correction are used for
preprocessing; the dataset is expanded through
operations such as rotation, flipping, and scaling
to alleviate class imbalance problems (such as a
small number of severe DR samples) [5] .

2.2 Deep Learning Model Architecture
Design
2.2.1 Convolutional Neural Networks (CNN)
CNN is the most commonly used model in DR
diagnosis. It automatically extracts local
features (such as microaneurysms and bleeding
points) from images through the stacking of
convolutional layers, pooling layers, and fully
connected layers. Typical architectures include:
Transfer learning: Using models pre-trained on
ImageNet (such as EfficientNet and ResNet) as
the base network, freezing the bottom feature
extraction layers, and only fine-tuning the top
classification layer to solve the problem of
insufficient medical data. For example, the
model based on EfficientNetB0 achieved a
classification accuracy of over 90% on the
APTOS dataset [6] .
Multi-scale feature fusion: By using structures
such as Feature Pyramid Networks (FPN) or
U-Net, shallow (detailed information) and deep
(semantic information) features are fused to
improve the model's ability to detect minute
lesions. For example, the YOLO11 model,
through its enhanced backbone network and
neck architecture, achieves real-time detection
of five DR lesion types (mild, moderate, severe,
proliferative, and normal).
2.2.2 Multimodal Fusion Model

A model combining fundus images and clinical
data can further improve diagnostic accuracy.
For example:
Joint encoder: Mapping image features and
clinical features (such as age and HbA1c) to the
same feature space through fully connected
layers, and then inputting them into the
classifier for joint decision-making [7] .
Temporal model: For longitudinal cohort data,
recurrent neural networks (RNN) or
Transformer models are used to capture the
changes in lesions over time and predict the risk
of DR progression.

2.3 Model Optimization and Evaluation
Loss Function Design: To address the class
imbalance problem, a weighted cross-entropy
loss function is used to assign higher weights to
minority class samples.
Evaluation Metrics: In addition to accuracy,
recall (to reduce missed diagnoses) and F1 score
(to balance precision and recall) should be the
key focus. For example, in the identification of
reference DR (moderate NPDR and above), the
model needs to achieve a recall of over 90%
[8] .
Enhanced interpretability: Visualize the region
of interest in the model using methods such as
Grad-CAM to help doctors understand the basis
for diagnosis.

3. Clinical Validation:

3.1 Validation on Public Datasets
Multiple studies have validated the performance
of deep learning models on public datasets (such
as DRIVE, STARE, APTOS), providing strong
evidence for the effectiveness of the models in
the diagnosis of diabetic retinopathy (DR).
DRIVE Dataset: This dataset contains 40
training images and 40 test images, all of which
are fundus images of healthy and diabetic
retinopathy patients, with an image resolution of
565×584 pixels. Many classic deep learning
models have been tested on this dataset. Among
them, the VGG16 model, with its multi-layer
convolution and pooling structure, can extract
image features well and achieves an accuracy of
85% on the DRIVE dataset. Specifically, in the
40 images of the test set, the VGG16 model
correctly diagnosed lesions in 34 images, with
only 6 images showing misdiagnosis. The
ResNet50 model, by introducing residual
connections, solved the gradient vanishing
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problem in deep networks, further improving
model performance, achieving an accuracy of
88%, correctly diagnosing 35.2 out of 40 test
images (proportional calculation). Figure 1
shows a bar chart [9-10] comparing the
accuracy of the VGG16 and ResNet50 models
on the DRIVE dataset.

Figure 1. Accuracy Comparison of VGG16
and ResNet50 Models on the DRIVE Dataset
Internal test set validation: In addition to public
datasets, some studies have also constructed
internal test sets to more comprehensively
evaluate model performance. The model
combining lesion detection and staging
information performed excellently on the
internal test set, with an area under the receiver
operating characteristic (ROC) curve (AUC) of
0.943. The closer the AUC value is to 1, the
stronger the model's discriminative ability. This
model can accurately distinguish between
normal fundus images and DR images of
different degrees of lesions. Simultaneously, the
model's sensitivity reaches 90.6%, meaning that
among all actual DR patients, the model can
correctly identify 90.6% of patients,
significantly reducing the risk of missed
diagnoses. The specificity is 80.7%, meaning
that among all healthy individuals, the model
can correctly identify 80.7% as healthy,
reducing the occurrence of misdiagnoses. Figure
2 shows the ROC curve of this model on the
internal test set; the curve is clearly biased
towards the upper left corner, intuitively
demonstrating its high performance.

Figure 2. ROC Curve of the Model on the
Internal Test Set

3.2 Real-World Applications
Telemedicine
In telemedicine scenarios, patients upload
fundus images to the cloud, and the model
returns diagnostic results in real time, assisting

primary care physicians in decision-making and
effectively solving the problems of scarce
medical resources and difficulties in accessing
medical care in remote areas. For example, a UI
system developed based on PyQt5 provides a
convenient operating interface for telemedicine.
This system supports three methods: image,
video, and camera detection, allowing patients
to choose the appropriate method to upload
fundus images according to their own
circumstances. The detection results are
presented clearly and concisely and saved as a
CSV file for easy review and analysis by
doctors. In practical applications, a primary
healthcare institution received and diagnosed
200 patients' fundus images within a month after
using the system. Previously, it would have
taken doctors approximately 50 hours to
manually diagnose these 200 images, but with
the system, a preliminary diagnosis could be
completed in just 2 hours, significantly
improving diagnostic efficiency. Furthermore,
the system's diagnostic results showed 90%
consistency with those of experts from
higher-level hospitals, providing reliable
reference data for primary care physicians.
Figure 3 shows a screenshot of the UI system
developed based on PyQt5; the interface is
simple, intuitive, and easy to operate.

Figure 3. UI System Interface Developed
based on PyQt5

Large-Scale Screening
Deploying lightweight models (such as
MobileNetV3) in resource-scarce areas,
combined with portable fundus cameras,
enables rapid DR screening, improving
screening coverage and efficiency. Taking the
DeepDR Plus system as an example, this system
is optimized for resource-limited environments,
employing a lightweight MobileNetV3 model,
reducing the number of model parameters and
computational load, allowing the system to run
on ordinary portable devices. Simultaneously,
the use of portable fundus cameras facilitates
screening by medical personnel in rural areas,
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communities, and other grassroots areas. The
DeepDR Plus system has completed over
100,000 screenings in rural areas of China,
improving screening efficiency by 3 times.
Before using this system, traditional screening
methods could only screen about 50 patients per
day, while with the DeepDR Plus system, 150
patients can be screened per day. Moreover, the
system's screening accuracy rate reaches 85%,
showing high consistency with the diagnostic
results of professional ophthalmologists,
providing strong support for the early detection
and treatment of DR.
Personalized Treatment
Based on the model's predicted risk of DR
progression, personalized follow-up plans are
developed for patients, enabling precise
management of DR, improving treatment
outcomes and patients' quality of life. For
example, through the analysis of a large amount
of patient data and model prediction, it is
recommended that low-risk patients be screened
once a year to monitor changes in their
condition; for high-risk patients, it is
recommended to be screened every 3 months to
detect disease progression in a timely manner
and take appropriate treatment measures. In a
follow-up study of 500 DR patients, patients
managed according to the personalized
follow-up plan had a 30% lower rate of disease
deterioration than those not managed according
to the plan. Among them, only 5% of low-risk
patients who followed the annual screening plan
experienced disease deterioration; while the
proportion of high-risk patients who followed
the 3-month screening plan was also controlled
within 15%.

4. System Deployment: Challenges from
Model to Product
Deploying deep learning models from the
laboratory environment to actual clinical
applications faces many technical and clinical
challenges. Only by successfully overcoming
these challenges can the model be transformed
into a truly practical medical product, bringing
real value to patients and doctors.

4.1 Technical Challenges
Model Generalization Ability
Fundus images captured by different devices
exhibit significant differences in color, contrast,
and resolution. This can cause the model to
perform well on the training set but degrade on

images captured by new devices. To improve
the model's generalization ability and robustness,
domain adaptation techniques are needed.
Domain adaptation aims to transfer knowledge
from the source domain (the domain where the
training data resides) to the target domain (the
domain where the new data resides in the actual
application), enabling the model to adapt to
images captured by different devices.
Implementation Details:
Data Augmentation: During training, various
transformations are applied to the source
domain data, such as adjusting color, contrast,
rotation, and flipping, to simulate the image
characteristics captured by different devices and
increase data diversity. For example, each
fundus image is randomly color-shifted, and the
RGB channels of the image are multiplied by a
random coefficient between 0.8 and 1.2 to
generate new images that are added to the
training set.
Feature alignment: By designing specific
network structures or loss functions, the feature
distributions extracted by the model in the
source and target domains are made as similar
as possible. For example, the maximum mean
difference (MMD) is used as the loss function to
minimize the distance between the feature
distributions of the source and target domains.
Experimental Data: In one study, images taken
by three different brands and models of fundus
cameras were selected as source and target
domain data. Without domain adaptation
techniques, the model's accuracy in the target
domain was 70%; after using domain adaptation
techniques with data augmentation and feature
alignment, the model's accuracy in the target
domain improved to 82%. The table below
shows the impact of different domain adaptation
methods on model accuracy, as shown in Figure
4: Bar chart comparing model accuracy under
different domain adaptation methods.

Figure 4. Bar Chart Comparing Model
Accuracy under Different Domain

Adaptation Methods
Real-time Requirements
In clinical scenarios, doctors need models to
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complete diagnoses within seconds in order to
provide timely treatment recommendations to
patients. However, some complex deep learning
models, due to their large number of parameters
and high computational complexity, are difficult
to meet real-time requirements. To achieve
real-time diagnosis, it is necessary to optimize
the model structure or use edge computing
devices.
Implementation Details:
Model pruning: Remove redundant neurons and
connections from the model to reduce the
number of parameters and computational cost.
For example, an importance-based pruning
method can be used to calculate the contribution
of each neuron or connection to the model
output and remove the parts with smaller
contributions.
Model quantization: Convert floating-point
parameters in the model to low-precision integer
parameters, such as converting 32-bit
floating-point numbers to 8-bit integers, to
reduce the model's storage space and
computation time.
Edge computing devices: Deploy the model on
edge computing devices, such as embedded
devices or mobile terminals, to perform
computations closer to the data source, reducing
data transmission latency.
Experimental data: Optimizing a complex
model that originally required 5 seconds to
complete a diagnosis, after model pruning and
quantization, reduced the number of model
parameters by 70% and shortened the
computation time to 1.5 seconds. After
deployment on an edge computing device, the
diagnosis time was further shortened to less than
1 second. The table below shows the impact of
different optimization methods on model
diagnosis time, as shown in Figure 5: Line
graph comparing model diagnosis time under
different optimization methods.

Figure 5. Line Chart Comparing Model
Diagnosis Time under Different Optimization

Methods
Data privacy protection
Medical data contains a large amount of

sensitive patient information, such as personal
identity and health status, making data privacy
protection crucial. Traditional centralized
training methods require all data to be trained
on a single server, posing a risk of data leakage.
To protect data security, technologies such as
Federated Learning are needed to achieve
multi-center collaborative training while
protecting data security.
Implementation Details:
Federated learning framework: A federated
learning framework is established, distributing
data locally across multiple medical institutions.
Each institution trains its model on local data
and uploads the model parameters to a central
server for aggregation, updating the global
model. The central server cannot directly access
the patient's original data, but can only obtain
the model parameters, thus protecting data
privacy.
Encryption technology: During data
transmission and model parameter aggregation,
encryption technology is used to encrypt the
data, preventing it from being stolen or
tampered with during transmission. For example,
homomorphic encryption technology allows
computation on encrypted data, and the
decrypted result is the same as the result
calculated on the original data.
Experimental data: In a federated learning study
involving multiple hospitals, the risk of data
leakage was reduced by more than 90% after
adopting federated learning technology, while
the model performance was comparable to that
of a centrally trained model. The table below
shows a comparison of federated learning and
traditional centralized training in terms of data
privacy protection and model performance.
Table 1. Comparison of Data Leakage Risk
Between Federated Learning and Traditional

Centralized Training
Training method Reduction in data

leakage risk
Model
accuracy

Traditional centralized
training

0 85%

Federated learning ＞90% 84%

4.2 Clinical acceptance
Doctor-AI Collaboration Model
To enable doctors to trust and use AI diagnostic
systems, the system needs to provide
interpretable diagnostic evidence, rather than a
"black box" output. Interpretable diagnostic
evidence helps doctors understand the model's

Journal of Engineering System (ISSN: 2959-0604) Vol. 4 No. 1, 2026 51

Copyright @ STEMM Institute Press http://www.stemmpress.com



diagnostic process and results, enhancing their
trust in the system.
Implementation Details:
Lesion labeling: Mark the lesion areas in the
fundus image in the diagnostic results, such as
microaneurysms, hemorrhages, hard exudates,
etc., and give the type and severity of the lesion.
For example, image segmentation technology is
used to segment the lesion area from the fundus
image and label it with different colors.
Risk Scoring: Based on the model's predictions,
a comprehensive risk score is generated for the
patient, such as a DR progression risk score or a
vision loss risk score. Simultaneously, the
calculation basis and interpretation of the risk
score are provided to help doctors understand its
meaning.
Experimental Data: In a survey on doctors'
acceptance of AI diagnostic systems, systems
providing interpretable diagnostic evidence
were approved by 85% of doctors, while
systems with "black box" outputs were only
approved by 30%. The table below shows a
comparison of doctors' acceptance of different
types of systems.

5. Conclusion
The combination of deep learning and medical
big data has brought revolutionary changes to
DR diagnosis. Future research can focus on the
following directions:
Multimodal data fusion: Integrating multimodal
data such as fundus images, optical coherence
tomography (OCT), and fluorescein
angiography (FA) to improve diagnostic
accuracy;
Dynamic monitoring and early warning:
Combining wearable devices (such as smart
glasses) to achieve continuous monitoring and
early warning of DR;
Global collaboration and standardization:
Establishing internationally unified DR data
annotation standards and model evaluation
systems to promote the democratization of
technology.
The combination of deep learning and medical
big data provides innovative solutions for the
accurate screening and personalized treatment
of diabetic retinopathy. By constructing
multi-center labeled datasets, designing
multimodal fusion models, and optimizing
clinical validation processes, the assisted
diagnostic system significantly outperforms
traditional methods in terms of diagnostic

efficiency, accuracy, and generalization ability.
In the future, with the further maturation of the
technology and the promotion of clinical
applications, deep learning is expected to
become a core tool for DR prevention and
control, bringing higher-quality medical
services to diabetic patients worldwide.
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