

Optimization Strategy and Path of Enterprise Business Management in the Context of Digital Economy

Bo Wu

School of Finance, Chongqing College of Finance and Economics, Chongqing, China

Abstract: The digital economy, with data as its core production factor, is reshaping corporate operational logic through technologies like big data and artificial intelligence, posing systemic challenges to traditional business management models. This paper first systematically analyzes the practical dilemmas faced by enterprises in the digital era. It then proposes an optimization strategy framework—"top-level design, technological empowerment, talent support, and ecosystem collaboration"—across four dimensions: strategic restructuring, process reengineering, organizational transformation, and data governance. Additionally, it establishes a comprehensive improvement pathway encompassing transformation implementation, decision-making closure, and performance evaluation. The study aims to provide theoretical references and practical guidance for enterprises to adapt to digital economy transformations, enhance business management capabilities, and achieve sustainable development.

Keywords: Digital Economy; Business Administration; Optimization Strategy; Efficiency Improvement

1. Introduction

With the deep integration of new-generation information technology and the real economy, the digital economy has become the core engine of global economic growth. China's technological advancements are progressing at an unprecedented pace, driving continuous expansion of the digital economy. Digital transformation, network integration, and intelligent upgrading have become essential for corporate survival and development. As the cornerstone of business operations, the level of business administration directly determines resource allocation efficiency, market responsiveness, and core competitiveness. However, traditional business management

models face critical challenges such as rigid processes, fragmented data, delayed decision-making, and inadequate risk control capabilities, making them ill-suited to the dynamic market demands, rapid technological iterations, and complex competitive landscapes of the digital economy. How enterprises can break through development bottlenecks through business management optimization and enhance management efficiency via digital tools has become a central focus of current theoretical research and practical exploration.

2. The Realistic Difficulties Faced by Current Enterprise Administration

2.1 Severe Inadequacy in Strategic Digital Adaptation

As the top-level design for corporate development, strategy's alignment with digital economy trends directly determines the overall effectiveness of business management. Currently, most enterprises still adhere to traditional thinking patterns in strategy formulation, lacking systematic understanding of digital technologies and deep integration awareness. They fail to fully grasp the disruptive changes brought by the digital wave to industry ecosystems, market competition patterns, and customer demand logic [1]. Some companies, while echoing the trend of digital transformation slogans, often treat it as a macro-level conceptual statement. They fail to break down transformation goals into actionable, measurable business indicators based on their own operational scenarios and resource endowments, nor establish resource investment mechanisms and responsibility division systems matching their strategies. The phenomenon of "strategic idling"—where there's a clear disconnect between strategic planning and execution—turns digital transformation into superficial efforts or "castles in the air." As a core production factor, digital technology struggles to play its supporting role. Ultimately, when facing the wave of industry digital

transformation, enterprises often find themselves in a passive follower position, unable to build differentiated competitive advantages through strategic leadership.

2.2 The Digital Transformation of Processes is Significantly Lagging Behind

Traditional business management processes, predominantly structured around hierarchical frameworks, suffer from chronic issues like redundant procedures, overlapping responsibilities, and inefficient workflows. These shortcomings create a stark disconnect from the digital economy's demand for agile processes and seamless collaboration. Departmental silos have created isolated "information islands" between business systems, preventing cross-departmental data sharing. Take supply chain management as an example: core operational data from procurement, production, and sales remains fragmented across disparate systems. The absence of unified integration and coordination mechanisms leads to delayed market demand updates, inaccurate production planning, and misaligned inventory management. Furthermore, outdated processes lack standardization and smart transformation, with repetitive tasks still relying on manual operations. This not only increases unnecessary operational costs but also creates human error risks. Such rigid and inefficient workflows leave companies ill-equipped to respond swiftly to market changes, often missing critical opportunities. Even when competing with digital transformation leaders, they may find themselves at a developmental disadvantage due to inefficient process gaps.

2.3 Persistent Challenges in Organizational Digital Transformation

The traditional pyramid-style organizational structure remains a critical bottleneck hindering corporate digital transformation. Its multi-tiered and vertically integrated framework results in lengthy decision-making chains, high information transmission costs, and low efficiency. Frontline employees, as direct market demand perceivers, often need to relay critical information like customer feedback and industry trends through multiple reporting levels before reaching decision-makers. This process frequently leads to information distortion and loss, ultimately causing strategies to diverge from actual market needs and decision-making

responses to lag behind market changes. Moreover, the mismatch between internal talent structures and digital transformation demands is particularly pronounced. Current workforce generally lacks core competencies such as data insights, digital tool application, and digital business design [2], making it difficult to adapt to digital management requirements. Finally, enterprises face significant shortcomings in talent acquisition and cultivation. The lack of effective recruitment channels and systematic digital skills training systems has resulted in persistent shortages of specialized digital management and technical professionals, which has become a core bottleneck constraining organizational digital transformation-a critical issue that cannot be overlooked.

2.4 Inefficient Value Conversion of Data Assets

In the digital economy era, data has become a core production factor as vital as human resources, capital, and technology. However, most enterprises still lack comprehensive data governance and value transformation systems, leaving vast data resources in a "dormant" state. During data collection, companies commonly face issues like limited coverage and inconsistent standards, focusing mainly on internal business data while neglecting external market data, user behavior data, and industry trends. Moreover, data formats and standards vary across departments and systems, lacking unified norms. In data processing, the absence of professional governance teams and technical tools slows down essential tasks like data cleaning, integration, and desensitization. Effective data extraction remains challenging, with low-quality data consuming storage resources and hindering processing efficiency. Regarding value extraction, corporate data applications remain at basic statistical and reporting levels, failing to leverage advanced technologies like big data analytics and AI algorithms to uncover market patterns, customer needs, and risk factors. This prevents data assets from becoming supports for precision decision-making, drivers of business innovation, or barriers against risks, ultimately failing to fully realize their core value [3]. Finally, Table 1 systematically illustrates the key differences between traditional and digital business management models.

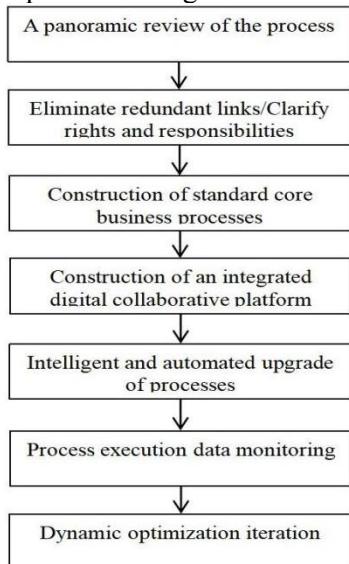
Table 1. Comparison of Key Elements in Business Administration for Enterprises in the Digital Economy Era

Contrast dimension	traditional management model of industry and commerce	digital business management model
management philosophy	experience driven, internal control	data-driven, ecosystem collaboration
Core elements	human resources, capital, and materials	Data, technology, and talent
histology	Pyramid structure	Flat and agile organizations
decision model	subjective judgment, qualitative analysis	Data support, combining quantitative and qualitative approaches
Process characteristics	redundant link, serial operation	Lean and efficient, parallel and collaborative
effectiveness evaluation index	Single indicators such as production capacity and profit	Response speed, resource allocation efficiency, customer satisfaction, and other multi-dimensional metrics
Technical Support	Basic information tools	Big data, artificial intelligence, cloud computing and other digital technologies

3. Optimization Strategy System of Enterprise Business Administration under the Background of Digital Economy

3.1 Strengthening Top-Level Design Guidance

The core of strategic digital transformation lies in breaking traditional mindsets to achieve deep integration between strategy and the digital economy. Companies should establish strategic planning teams composed of executives, business leaders, and digital experts. These teams should integrate industry data, market trends, and internal operational data, utilizing big data analytics for systematic analysis to accurately identify key directions and critical drivers of digital transformation. To this end, the immediate priority is to clarify the core objectives of digital strategy, breaking them down into specific business metrics across dimensions such as market expansion, efficiency improvement, and product innovation. A "strategy-business-data" collaborative responsibility matrix should be established [4], clearly defining the boundaries of responsibilities and evaluation criteria for each level and department to ensure systematic implementation. Simultaneously, it is essential to build cross-departmental strategic coordination mechanisms, breaking down functional barriers to promote synergy among R&D, production, sales, and finance departments around digital strategy, avoiding fragmented transformation caused by single-department efforts. Additionally, a dedicated funding mechanism for digital strategy should be established to allocate resources rationally for technology procurement, talent development, and platform construction,


ensuring sufficient support for strategic execution.

Secondly, the dynamic adjustment mechanism is crucial for ensuring strategic adaptability. Enterprises should establish a digital strategy monitoring platform to track key metrics in real time, including the return on digital technology investment, business digitalization coverage, and market responsiveness. By aligning with industry technological trends, policy changes, and competitive landscape shifts, companies should conduct quarterly strategic reviews and optimizations, forming a closed-loop management system of "planning-execution-feedback-iteration" to prevent strategic rigidity. Finally, enterprises should strengthen strategic collaborations with industry leaders, research institutions, and digital technology service providers. Leveraging external expertise and technological empowerment enables timely strategic optimization [5], ensuring digital strategies remain at the forefront of industry development and continuously provide top-level guidance for enhancing business management efficiency.

3.2 Digital Process Reengineering

The digital transformation of processes should prioritize value creation through systematic restructuring of traditional management workflows. In practice, enterprises should employ business process management techniques to map existing workflows, accurately identify redundant steps, overlapping responsibilities, and information bottlenecks. Guided by the principles of "value orientation and efficiency first," non-value-adding processes should be eliminated, departmental boundaries

clarified, and a standardized core business process system established, as illustrated in Figure 1. For instance, a manufacturing company streamlined its procurement approval process from seven to three steps, reducing the approval cycle from five days to 1.5 days, significantly enhancing operational efficiency. Building on process standardization, organizations should implement dynamic optimization mechanisms. This involves regularly collecting feedback on process execution, continuously iterating process designs based on business scenario changes and technological trends, and ensuring processes remain agile and adaptable. Additionally, strengthening accountability tracking mechanisms at process nodes is crucial. Linking process performance outcomes to departmental evaluations will drive quality improvements across all operational stages.

Figure 1. Implementation Process of Enterprise Process Digital Reengineering

Furthermore, establishing an integrated digital collaboration platform serves as the technical foundation for process digitization. Enterprises can utilize API interfaces to interconnect data channels across procurement, production, sales, finance, and human resources systems, breaking down "information silos" and enabling seamless data flow and real-time sharing throughout business processes. To achieve this, companies may deploy digital tools such as Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM), while introducing intelligent scheduling systems in supply chain management. These systems leverage real-time data to predict procurement

needs, dynamically monitor inventory levels, and optimize logistics routes, thereby reducing inventory costs. Additionally, businesses can focus on customer lifecycle needs by driving end-to-end collaboration across front-end marketing, mid-end services, and back-end operations [6]. Through data integration, they can achieve efficient responses from customer insight to satisfaction. By employing technologies like Robotic Process Automation (RPA) and artificial intelligence, repetitive tasks such as financial reimbursement and HR attendance can be automated, freeing human resources from routine work to focus on high-value creative endeavors, ultimately enhancing overall process efficiency.

3.3 Organizational Digital Transformation

The essence of organizational digital transformation lies in establishing a digital-ready organizational structure and talent ecosystem. To fully unleash organizational vitality, enterprises should adopt a flat organizational structure, reduce middle management layers, shorten decision-making chains, and enable direct communication between frontline business units and decision-makers [7], thereby enhancing information flow efficiency and decision response speed. First, cross-departmental digital collaboration teams can be established to implement project-based operations around core business scenarios, integrating specialized resources from different departments to promote information sharing and collaborative innovation. These teams must establish clear division of responsibilities and communication mechanisms, defining project objectives, timelines, and member duties to avoid buck-passing during collaboration. Additionally, agile management methods can be introduced to advance project implementation through rapid iteration and small-step execution, thereby improving the organization's ability to adapt quickly to market changes.

Second, building a digital talent team is the cornerstone of organizational transformation. To this end, companies should establish a digital skills matrix, providing specialized training for existing employees in big data analysis and digital tool application (with an annual training duration of no less than 40 hours recommended). Measures such as internal rotation and project-based practice should be implemented to enhance digital literacy. While cultivating

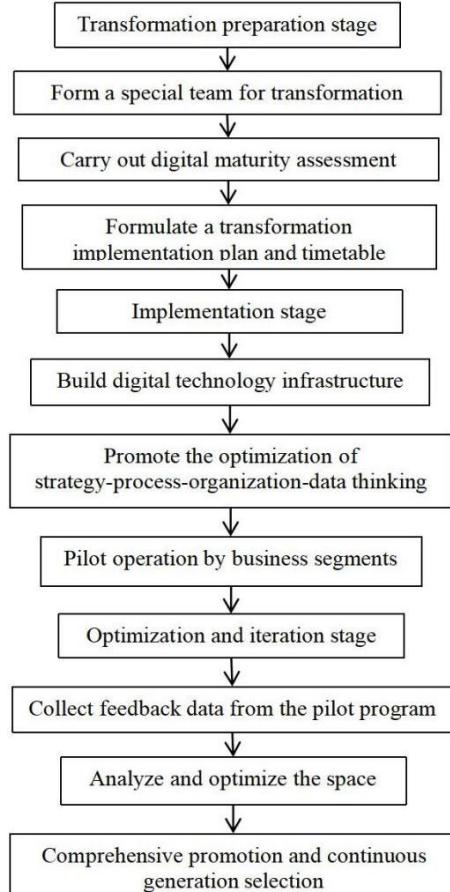
employees, companies must also optimize talent recruitment mechanisms, focusing on attracting professionals in digital management and data governance to build a multidisciplinary talent pool. Establishing digital talent incentive mechanisms, such as long-term equity and stock options for core talents, can reduce turnover rates. Third, enterprises should develop an internal digital talent pipeline system, selecting business backbone members as digital seed candidates. Through mentorship, specialized training, and external exchanges, accelerate their growth to form a complete talent cycle of "recruitment-cultivation-promotion." Amid the digital wave, it's crucial to actively foster a digital organizational culture. Internal campaigns and success case sharing can strengthen digital mindset across the organization, eliminate resistance to transformation, and establish a tolerance mechanism. Encourage employee participation in digital innovation and reward innovative achievements. Construct open communication platforms to facilitate the exchange of digital technologies and management experience among employees, creating an organizational atmosphere that encourages bold experimentation and innovation [8].

3.4 Data Asset Management

Data asset management should establish a comprehensive "collection-governance-application" system to fully unlock the value of data elements. First, a standardized data collection mechanism must be implemented, defining clear scopes, criteria, and formats. This involves integrating multi-channel data resources from internal business systems, external market platforms, and user terminals, covering not only core business data but also expanding to external data such as industry trends, competitor dynamics, and user behavior, thereby forming a comprehensive data resource pool. To ensure data accuracy and reliability, data quality evaluation standards should be established, with assessment metrics covering completeness, accuracy, timeliness, and consistency. Data quality should be incorporated into departmental performance evaluations to enhance data quality awareness across the organization. Additionally, a dynamic optimization mechanism for data collection should be considered, continuously expanding collection dimensions and refining methods

based on business development needs and technological trends to ensure data comprehensiveness and timeliness. Compliance management during data collection must be strengthened, strictly adhering to data security laws and regulations, and standardizing user data collection authorization processes [9] to ensure the legality and security of data collection.

Secondly, it is recommended to establish an enterprise-level data middle platform, creating a comprehensive governance framework that covers data governance, storage, computing, and services. A specialized data governance team should be formed to perform operations such as data cleaning, deduplication, integration, and desensitization, eliminating invalid data, standardizing data formats, and forming standardized, reusable data assets. After implementing the data middle platform, a large manufacturing enterprise successfully increased its effective data utilization rate from 38% to 75%, with data processing efficiency tripling. Finally, enhancing data value mining applications is equally critical. Technologies like big data analytics and machine learning can be introduced as key tools to deeply analyze the business logic behind data, identify industry trends and competitive opportunities during strategic planning, optimize resource allocation in operational management, and achieve precise risk warnings in risk control. Additionally, a data value conversion evaluation system should be established to quantify the contribution of data assets to the enterprise from dimensions such as efficiency improvement, cost reduction, and benefit growth, forming a closed-loop management system of "data collection-governance-application-evaluation-optimization".


4. The Full-Chain Implementation Path for Enhancing Corporate Business Management Efficiency

4.1 Digital Transformation Implementation Process

As illustrated in Figure 2, the digital transformation of enterprise management should follow a step-by-step approach-preparation, implementation, and optimization-to ensure a smooth and orderly transition.

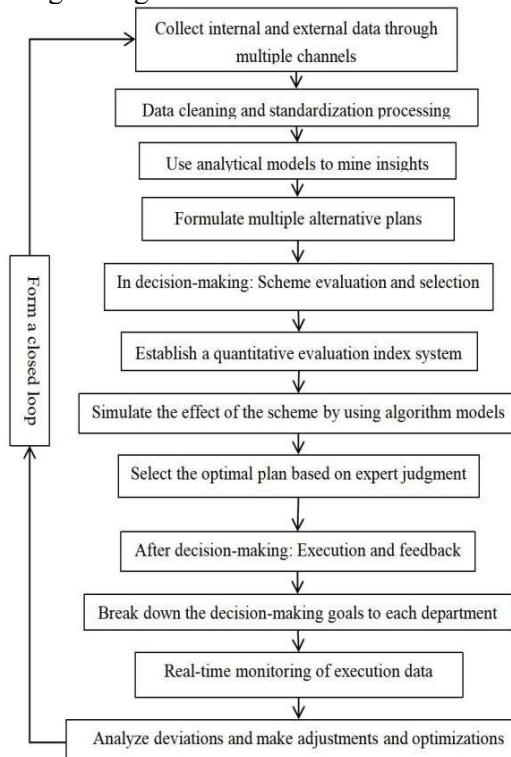
During the preparatory phase, the transformation task force should strive for comprehensive participation, including senior executives,

business leaders, technical experts, and external consultants. This multi-stakeholder collaboration system should balance strategic guidance, operational implementation, technical support, and professional empowerment to ensure scientifically sound decisions and feasible execution. Specifically, senior executives will lead the top-level design of transformation strategies, identifying alignment points between transformation initiatives and the company's overall development goals. Business leaders must accurately identify pain points and needs within existing management processes to prevent technological disconnection from business operations. Technical experts will evaluate the compatibility of current IT infrastructure and develop implementation plans. External consultants will leverage industry expertise to provide benchmark case references and risk alerts. The maturity assessment should establish multiple evaluation metrics across four dimensions—strategy, processes, organization, and data—to clearly define the gap between current status and transformation objectives.

Figure 2. Digital Transformation Path of Enterprise Business Administration

During the implementation phase, the "pilot-first,

then roll-out" approach should be adopted. Prioritize business sectors with robust digital foundations, typical operational scenarios, and clear ROI projections (e.g., supply chain management, customer relationship management) for initial trials to mitigate transition risks. The pilot strategy follows a four-phase roadmap: "process reengineering → system deployment → staff training → trial operation". First, restructure existing management processes aligned with digital objectives by eliminating redundant steps and optimizing collaboration logic. Second, deploy tailored digital tools (e.g., ERP upgrades, SCRM system integration, low-code platform development) to ensure deep integration between technology and business workflows. Third, conduct tiered training: management teams focus on strategic awareness and decision-making applications, operational teams concentrate on operational skills and process adaptation, while technical teams prioritize system maintenance and troubleshooting. Finally, initiate a 1-3 month trial period with dedicated personnel responsible for issue collection and feedback.


As illustrated in Figure 2, the optimization phase should establish a dynamic mechanism of "data feedback-rapid adjustment-continuous iteration" to continuously refine the plan based on pilot operation data, thereby maximizing transformation efficiency. On one hand, a digital monitoring platform can be established to collect real-time operational data, personnel action data, and business outcome data during the pilot process, with transformation effects visually presented through dashboards. On the other hand, a cross-departmental optimization team should be formed to hold weekly data review meetings, swiftly developing adjustment plans for issues exposed during the pilot, such as system compatibility problems, process integration gaps, and personnel operational bottlenecks [10].

4.2 Data-driven Business Decision-Making Process

In the digital economy era, business management decisions must transition from experience-driven to data-driven approaches, establishing a comprehensive data-driven support system throughout the entire process, as illustrated in Figure 3.

This process emphasizes data-driven decision-making throughout the entire lifecycle. Before making decisions, it is essential to

establish a multi-source data collection network to achieve comprehensive coverage of both internal and external data. Internal data should be as comprehensive as possible, leaving no blind spots, ensuring it includes operational data from the enterprise ERP system, customer data from the CRM system, revenue and expenditure data from the financial system, and personnel performance data from the human resources system. These data are processed through the data middle platform for cleaning, integration, and standardization. External data encompasses industry macro data, competitor dynamics, policy and regulatory data, and market consumption trends, which are obtained through channels such as industry database procurement, third-party data research, and social media sentiment analysis. Building on this foundation, advanced analytics tools (e.g., Hadoop, Spark) and AI algorithm models (e.g., association rule mining, regression analysis, clustering analysis) can be employed for in-depth mining to accurately identify core management issues and potential opportunities. For instance, cross-analyzing customer consumption data with service feedback data can pinpoint high-value customer churn risk points, while comparing industry data with internal operational data can reveal optimization opportunities for product pricing strategies.

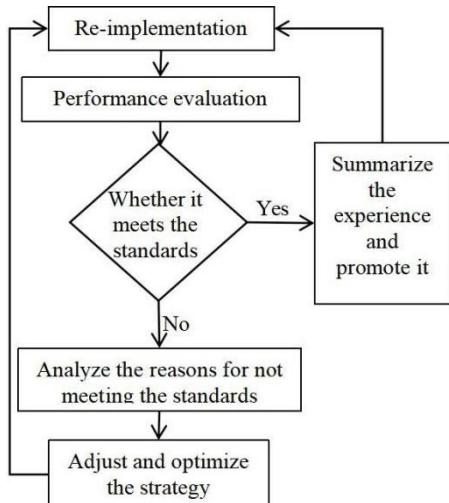


Figure 3. Full-process Data Support System

The application of quantitative evaluation and simulation technologies in decision-making enhances scientific rigor and foresight. Establishing a quantifiable evaluation index system serves as a focal point, converting key factors such as strategic alignment, implementation costs, expected returns, and risk levels into measurable metrics. Tools like weighted scoring and analytic hierarchy process (AHP) are employed for comprehensive assessment. Meanwhile, techniques including scenario simulation and sand table modeling are utilized to predict the implementation effects of different decision options, simulating their feasibility under various market conditions and internal circumstances. Post-decision implementation requires real-time monitoring and rapid adjustments to ensure effective execution. To this end, a decision execution dashboard can be established, setting real-time tracking thresholds for key performance indicators (KPIs) to dynamically monitor core data during implementation and promptly alert when deviations occur. A decision effectiveness evaluation system should be developed, comprehensively assessing both short-term outcomes (e.g., process efficiency improvements, cost reductions) and long-term impacts (e.g., enhanced market competitiveness, strengthened sustainable development capabilities). Additionally, establishing a knowledge repository after decisions can help consolidate decision-making processes, data-driven logic, and implementation results, providing references for future similar decisions [11] and achieving continuous improvement in decision-making capabilities.

4.3 Closed-loop Path for Enhancing Business Management Efficiency

The core objective of business management optimization is to enhance efficiency. As illustrated in Figure 4, a closed-loop process of "optimization-implementation-evaluation-iteration" should be established to continuously improve management standards. By implementing this approach, enterprises can promptly identify issues and shortcomings in their business management, thereby refining strategies and processes. This ensures that business management remains aligned with corporate strategic goals and market trends, achieving a spiral upward trajectory in management effectiveness.

Figure 4. Closed-loop Path for Enhancing Business Management Efficiency

The optimization phase should begin with demand research, establishing a demand collection mechanism that ensures full participation while achieving precise targeting. Various methods such as management interviews, employee surveys, customer feedback analysis, and industry benchmark comparisons can be employed to comprehensively identify pain points and optimization needs in business management. These needs should be categorized into four types: "urgent and important," "important but not urgent," "urgent but not important," and "neither urgent nor important," forming a demand priority matrix. Based on this, specific optimization plans should be developed in alignment with the company's strategic goals and digital transformation direction, clearly defining optimization objectives, implementation steps, responsible parties, timelines, and resource allocation. Additionally, the optimization plan must undergo feasibility studies, with reviews conducted by department heads and external experts to ensure technical feasibility, economic rationality, and operational convenience.

The implementation phase should balance resource allocation with process control to ensure effective execution of the optimized plan. For resource management, it is essential to allocate human, material, and financial resources rationally, establish a dedicated implementation team with clearly defined roles, and provide specialized training for new processes and tools to enhance staff adaptability. A dynamic resource allocation mechanism should be implemented to adjust resources promptly based on progress and actual needs. Regarding process control,

adopting agile management methods is recommended. The implementation process should be divided into short-cycle iterations, with post-iteration reviews to address issues promptly. Simultaneously, a progress monitoring system should be established using project management tools to track task completion in real time, ensuring the implementation proceeds as planned.

To ensure objective and comprehensive evaluation outcomes, the assessment phase should establish a multi-dimensional, all-encompassing performance evaluation framework. Efficiency metrics include specific indicators such as decision-making cycles, process turnaround times, cross-departmental collaboration response speeds, and task completion timelines, exemplified by "reducing management decision cycles from 30 days to 15 days" and "shortening procurement process turnaround time from 20 days to 10 days." Cost metrics cover operational expenses, transformation investments, labor costs, and resource waste rates, as seen in "reducing annual operational costs by 12%" and "achieving 150% ROI on digital transformation investments." Benefit metrics encompass revenue growth rates, profit growth rates, customer satisfaction, and market share, such as "increasing core business revenue growth to 20%" and "raising customer satisfaction scores from 85 to 92." Innovation metrics include new product development speed, patent application volumes, and management model innovations, demonstrated by "shortening new product launch cycles from 12 months to 8 months" and "achieving 30% annual growth in patent applications." It is recommended to adopt a combined approach integrating quantitative and qualitative assessments, self-evaluations, and third-party evaluations. Data collection should leverage multiple methods including data analysis, field research, and interview discussions to ensure authentic and reliable assessment results.

The iterative phase should establish an "issue rectification-optimization" mechanism based on evaluation outcomes. For problems identified during assessments, conduct in-depth root cause analysis, develop targeted corrective measures, and clarify accountability and timelines. Dynamically adjust optimization plans in response to internal/external environmental changes (e.g., market demand adjustments,

regulatory updates, technological iterations) to ensure alignment with corporate development needs. Implement an iterative validation mechanism to reassess optimized solutions, verifying both the effectiveness of corrective actions and the rationality of optimization strategies. Additionally, establish a closed-loop knowledge repository to systematically archive optimization plans, implementation processes, evaluation results, and iterative experiences. This creates replicable and scalable management models that drive continuous improvement in business management efficiency. For instance, a tech company reduced redundant processes in business management from 23 to 3 after multiple iterations, significantly enhancing operational efficiency and providing robust support for high-quality corporate development.

5. Conclusion

This study proposes a four-dimensional optimization strategy framework of "strategy-process-organization-data" against the backdrop of digital economy development. It delineates a comprehensive improvement pathway encompassing transformation implementation, decision-making processes, and performance evaluation, which can significantly enhance corporate decision-making efficiency and operational effectiveness while reducing costs and building sustainable competitive advantages. For enterprises, optimizing business management in the digital economy context requires combining top-level design with grassroots exploration, as well as gradual implementation with continuous iteration. This involves not only formulating systematic transformation strategies but also encouraging innovative practices at the operational level. Enterprises should steadily advance phased transformations while establishing dynamic adjustment mechanisms to continuously optimize plans based on internal and external environmental changes. The development of the digital economy is not subject to individual will. Future efforts should focus on tracking digital economy trends, researching the deep integration of new technologies like artificial intelligence and blockchain in business management, and further enriching and refining the optimization system for business management.

References

- [1] Wang Q. Optimization Strategies and Efficiency Enhancement Pathways for Enterprise Business Administration in the Context of Digital Economy [J]. Modern Business Research, 2025(10):82-84.
- [2] Schwerter A. The impact of digital technologies on corporate management efficiency [J]. Journal of Business Research, 2022,145:321-330.
- [3] Jordan D. Strategies for Enhancing Corporate Business Management under the Digital Economy [J]. Modernization of Commercial Centers, 2025(11):133-135.
- [4] Zhou F. Strategies for Enhancing Corporate Business Management under the Digital Economy [J]. Economic and Technical Cooperation Information, 2024(6): 0055-0057.
- [5] Van der Aalst W M P. Process mining in digital transformation[J]. Computers in Industry, 2023,142:103789.
- [6] Verhoef P C, Broekhuizen T, Bart Y, et al. Digital transformation: A multidisciplinary reflection and research agenda [J]. Journal of Business Research,2021,133:116-125.
- [7] Liu Shuang. Strategies for Enhancing Corporate Business Management under the Digital Economy [J]. Chinese Science and Technology Journal Database (Abstract Edition), Social Sciences, 2025(1):201-204.
- [8] Luo N. Strategies for Enhancing Corporate Business Management under the Digital Economy [J]. Market Outlook, 2025(7): 166-168.
- [9] Meng Zhaoyang. Research on Innovation and Transformation Strategies of Industrial and Commercial Management Models for Small and Medium-sized Enterprises under the Background of Digital Economy [J]. China E-commerce, 2025,26(9):17-20.
- [10] Wenzel F, Verhoef P C, Böhm M. The digital transformation of business models: Insights from a systematic literature review and a framework for future research[J]. Journal of Management Information Systems,2022,39(4):1193-1228.
- [11] Matt C, Hess T, Benlian A. Digital transformation strategies [J]. Business & Information Systems Engineering, 2022, 64(6):693-708.