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Abstract: In the background of continuous
evolution in global carbon markets, the
influence exerted by international market
price fluctuations on the formation
mechanism of China's domestic carbon
pricing system has emerged as particularly
pivotal for investors engaged in rational
decision-making and risk mitigation.
Leveraging daily transaction data from
international carbon futures and domestic
carbon allowances spanning from July 2021
to the end of 2024, this study constructs a
Vector Autoregression (VAR) model to
systematically investigate the dynamic
interrelationships between global and
domestic carbon market prices. Through
comprehensive methodologies including
Granger causality tests, impulse response
analysis, and variance decomposition, the
empirical analysis reveals two key findings:
(1) China's carbon emission prices exhibit a
unidirectional causal relationship with the
European Union Allowance (EUA) prices,
and (2) the international carbon futures
market demonstrates a relatively weak and
asymmetric influence on China's domestic
carbon market, characterized by non-
symmetrical dependency patterns. These
discoveries underscore the strategic
importance of domestic strategy frameworks
and market mechanisms in shaping China's
carbon pricing dynamics amid global market
interconnections.

Keywords: Carbon Price; EU Carbon
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VAR Model

1. Introduction
Global climate change has emerged as an urgent
issue confronting countries worldwide, exerting
severe impacts on ecosystems, economic
development, and human livelihoods. To
address climate change and reduce greenhouse

gas emissions, countries around the globe have
successively committed to implementing
emission reduction measures, one of which is
the establishment of carbon emission trading
markets. Carbon emission markets regulate and
control greenhouse gas emissions through
market-oriented mechanisms, and actively
encourage enterprises to adopt low-carbon
technologies to strive for the achievement of
emission reduction goals. In recent years,
carbon emission markets worldwide have
achieved certain results, providing an effective
approach to addressing climate change[1]. As a
country with relatively high carbon emissions,
China bears an unshirkable responsibility in
addressing global climate change and the
government has actively promoted the
construction of a carbon emission trading
system[2], and set up pilot projects in multiple
regions across the country to carry out carbon
emission trading, striving to build a unified
national carbon emission trading system market.
With the continuous evolution of domestic and
international carbon markets, the international
carbon markets usually generates a transmission
effect to the domestic carbon market; at the
same time, the development of China's internal
carbon market may also have an impact on the
international carbon market. Because of this
two-way price transmission mechanism, it is
particularly important for this study to explore
the interactive relationship between the two
carbon markets.

2. Literature Review
With the advancement of global climate
governance, carbon pricing mechanisms have
increasingly become a key policy tool to
promote low-carbon transformation. In terms of
the correlation between macroeconomics and
carbon prices, many scholars have provided
empirical evidence. Lv(2019) based on multiple
regression method, used correlation analysis
and principal component analysis, and the
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results showed that European CER futures
prices can significantly affect Guangdong's
carbon trading prices[3].
Zhou(2019)constructed a VAR-VEC model to
deeply explore the dynamic correlation between
carbon emissions and energy prices, air quality,
macroeconomic indicators, and carbon emission
trading prices[4]. The analysis results showed
that there is a long-term equilibrium
relationship between carbon emission trading
prices and the above indicators. Bai(2022)
analyzed the carbon emission rights trading
prices in eight carbon market pilots in Beijing,
combined with different price fluctuation
factors, and constructed an ARMA-GARCH
model for empirical research[5]. The research
results showed that among the ten selected
economic indicators, some indicators and the
daily closing data of European carbon emission
rights trading have a significant impact on
China's carbon emission rights trading prices.
Regarding the variable of the energy market,
there are various different viewpoints and
explanations in the academic circle. Liu(2021)
constructed a VAR model and a DCC-GARCH
model, and found through research that the
impact of China's crude oil market on the
carbon market and its duration are longer than
those of the coking coal market[6]. In addition,
Zhao (2018) conducted an empirical analysis
based on data from five carbon pilot markets in
China and found that thermal coal prices are
negatively correlated with carbon prices, while
fuel oil prices are positively correlated with
carbon prices[7]. The observation results of
Lü(2021) showed that coal price fluctuations
have a significant correlation with carbon price
changes in five Chinese carbon trading pilot
markets[8]. Yan(2022) used VEC model,
impulse response analysis, variance
decomposition and other methods to deeply
explore the transmission path between coal
futures prices and carbon emission prices, and
the research results revealed that there is a long-
term equilibrium correlation between the two[9].
Lu(2018) evaluated the impact of carbon price
fluctuations on domestic energy market prices
from an international perspective, and pointed
out that there is a long-term cointegration
relationship between them, meaning that the
long-term fluctuation trends of domestic energy
prices and international carbon prices are
consistent[10]. In addition, Aguiar-
Conraria(2018) used an innovative multivariate

wavelet analysis method to study the California
carbon market and found that gasoline prices
and carbon prices show a stable negative
correlation within the annual cycle, while
electricity prices and carbon prices show a
positive correlation in the same cycle[11].
Wang(2022) combined the BK spillover index
model on the basis of the DY spillover model,
and found through research that there is a risk
spillover effect between the carbon market and
the power market, and the short-term intensity
is significantly higher than the long-term[12].
Deng(2023) focused on the regional differences
in energy consumption carbon emissions and
their causes, and the research pointed out that
the growth of population size, urbanization
level, and per capita GDP will increase carbon
emissions by increasing energy consumption;
therefore, various regions in China need to
adopt regionally differentiated emission
reduction strategies according to their own
characteristics[13].
Regarding the interaction between the
atmospheric environment and related variables
and the carbon market, Han(2019) conducted
prediction research using the MIDAS-BP
hybrid model, and the results showed that
compared with other variables, carbon prices
are more sensitive to changes in coal prices,
temperature, and air quality[14]. Liu(2020) took
the Beijing carbon trading pilot as a case,
adopted the multi-factor GARCH-MIDAS
model to identify the medium and long-term
driving factors of carbon prices, and found that
the air quality index is negatively correlated
with carbon prices, while the changing trend of
the Purchasing Managers' Index (PMI) of the
manufacturing industry is consistent with
carbon prices[15]. Rao(2019) focused on
examining the characteristics and causes of
price fluctuations in the carbon emission rights
trading market, pointing out that price
fluctuations show clustering effects and
asymmetric characteristics, and identified the
core factors that have a significant impact on
price fluctuations in the Guangdong carbon
market[16]. Li(2024) analyzed from the
perspective of carbon pricing mechanism and
believed that China's carbon market has adopted
a follow-up pricing model, which helps to
maintain the coordination and correlation
between domestic carbon prices and
international market prices[17]. Relevant
research further explained the transmission
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mechanism of this linkage: changes in
international carbon prices not only transmit
market sentiment information, but also
significantly affect traders' confidence, thereby
exerting a profound impact on domestic carbon
prices[18].
Since changes in international carbon emission
rights prices will affect changes in China's
carbon market prices, and China's current
carbon market is still in the initial stage of
development, it is urgent to deeply understand
the internal mechanism of its international price
transmission and formulate effective response
measures. Only by ensuring the stable operation
of the market and promoting the improvement
of the system in a coordinated manner can we
promote the healthy and orderly development of
China's carbon market.

3. Sample Description
The EU Emissions Trading System (EU ETS) is
the world’s longest-running and largest carbon
emission trading system: it officially launched
its first phase (2005-2007), initially covering
key emission sectors such as energy and
industry in EU member states; the second phase
(2008-2012) aligned with the Kyoto Protocol’s
emission reduction targets and expanded
coverage; the third phase (2013-2020)
introduced a Market Stability Reserve to
smooth price fluctuations; since 2021, it has
entered the fourth phase, further strengthening
emission reduction goals and enhancing market
flexibility and efficiency.
China’s carbon market follows the core path of
“pilot first, gradual expansion”: in 2011, 7
provinces and cities including Beijing,
Shanghai, and Guangdong launched local
carbon trading pilots, accumulating basic
experience in market operation; in July 2021,
the National Carbon Emission Trading Market
officially went online, initially covering only
the power generation industry; subsequent
efforts have focused on expanding sector
coverage and improving mechanisms, and it is
now moving toward a more mature national
carbon trading system.
Figure 1 presents the price trends of the two
markets, namely China’s carbon market (CEA)
and the EU’s carbon market (EUA). In the
initial phase from July 2021 to September 2021,
both CEA and EUA showed volatility, but the
price gap was significant: CEA fluctuated
between 40-60 CNY, while EUA rose rapidly to

a high of around 90 CNY. This gap reflects
both the EU carbon market’s maturity
advantage and the relatively weak price support
of China’s carbon market in its early stage.
From October 2021 to September 2023, the two
trends diverged sharply: EUA remained volatile
in a high range of 70-90 CNY, with periodic
fluctuations but staying at a relatively high level
overall; CEA, by contrast, was relatively stable,
fluctuating slightly in the 50-60 CNY range
most of the time, highlighting the small price
volatility, limited market activity, and weak
external impact transmission of China’s carbon
market in its early stage.

Figure 1. Price Trends
After October 2023, CEA entered an upward
trajectory, climbing from around 50 CNY to
over 90 CNY, narrowing the gap with EUA
significantly and even approaching it
periodically; during the same period, EUA
remained high but became more volatile. This
change not only reflects the growing activity of
China’s carbon market but also may indicate
that the transmission effect of international
carbon price fluctuations on the domestic
market is gradually emerging.

4. Methodology
Vector Autoregression(VAR) model is a widely
adopted multi-equation modeling approach. For
each current endogenous variable, this model
conducts regression analysis by utilizing the
lagged terms of all endogenous variables within
the model, which can effectively capture the
relationships among various endogenous
variables and has been extensively adopted and
applied in numerous research fields. This study
chooses to use the VAR model, where the
number of variables is n and the lag order is p,
with the specific expressions as follows:

�� = � + �=�
� ����−�� + �� (1)

�� = [���, ���, ⋯, ���]� (2)
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Among them, Vt represents a homoscedastic
stationary stochastic process composed of (p ×
1) vectors, α denotes an (n × 1) dimensional
constant vector, βi is a (p × p) coefficient
matrix, Vt−i stands for the variable of the
vector lagged by i orders, εt indicates the
random disturbance term, and Ω represents an n
× n symmetric positive definite matrix.
The Impulse Response Function can measure
the degree of impact of information shocks on
variables. By estimating the Impulse Response
Function, the corresponding impulse response
coefficients can be obtained in each VAR
model. These coefficients reflect the response
intensity of each endogenous variable in the
model after being subjected to a unit shock
from a specific variable. To more intuitively
observe the impact path and degree of shocks,
impulse response coefficients are usually
represented graphically. These graphs show
how a unit shock affects the current and future
values of endogenous variables within a given
period. By analyzing these graphs, one can
understand the dynamic interactions between
different variables and how shocks spread and
dissipate in the system.
Variance Decomposition decomposes the
variance of a system or model, analyzes the
degree of influence of each factor or parameter
on the system or model, and understands the
contribution of each variable shock to the

error[19]. This study will first adopt the
Granger causality test to conduct a preliminary
examination of the impact between international
carbon prices and China's carbon prices, then
establish a VAR model, and apply the impulse
response function and variance decomposition
to depict the mutual influence between the two
prices. Since China's national carbon market
was launched on July 16, 2021, this date is set
as the starting point of the sample period, with
the end date being December 31, 2024. After
excluding data from inconsistent trading
periods, a total of 829 valid data sets are
obtained. To eliminate potential
heteroscedasticity in the price time series, this
study conducts logarithmic transformation on
the variables: the logarithm of EUA is denoted
as LNEUA, and the logarithm of CEA contract
price is denoted as LNCEA.

5. Empirical Analysis

5.1 ADF Test
The ADF test evaluates whether the sequence is
stationary by comparing its test statistic with a
series of critical values based on different
confidence levels and lag orders, and the test
results are shown in Table 1. LNEUA is
stationary, while LNCEA is non-stationary in
its level form but becomes stationary after first-
order differencing. Therefore, all subsequent
analyses adopt the differenced data, which are
denoted as DLNCEA and DLNEUA.

Table 1. Results of ADF Test
Variable Orders t p 1% Critical Value 5% Critical Value 10% Critical Value

LNEUA 0 -3.084 0.028 -3.438 -2.865 -2.569
1 -29.106 0.000 -3.438 -2.865 -2.569

LNCEA 0 -0.210 0.904 -3.438 -2.865 -2.569
1 -34.620 0.000 -3.438 -2.865 -2.569

In this study, the optimal lag order is selected
based on various lag length criteria including
LR, FPE, AIC, SC, and HQ, and the lag order

of the VAR model is finally determined to be 6,
with the specific results presented in Table 2.

Table 2. Optimal Lag Order
Lag LR FPE AIC SC HQ
0 NA 2.17E-13 -20.647 -20.625* -20.639
1 31.128 2.12E-13 -20.671 -20.580 -20.635
2 32.696 2.06E-13 -20.697 -20.538 -20.635
3 16.253 2.07E-13 -20.694 -20.467 -20.606
4 6.419 2.11E-13 -20.674 -20.379 -20.559
5 21.079 2.09E-13 -20.681 -20.317 -20.539
6 141.992 1.67e-13* -20.905* -20.473 -20.737*
7 5.602 1.71E-13 -20.884 -20.384 -20.689
8 20.608 1.70E-13 -20.890 -20.322 -20.668
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9 11.903 1.72E-13 -20.880 -20.244 -20.632
10 5.743 1.75E-13 -20.860 -20.155 -20.585
11 11.513 1.77E-13 -20.850 -20.077 -20.548
12 36.159* 1.71E-13 -20.886 -20.045 -20.558
13 9.134 1.73E-13 -20.871 -19.963 -20.517
14 10.127 1.75E-13 -20.859 -19.882 -20.478
15 5.034 1.79E-13 -20.837 -19.792 -20.430

5.2 Granger Causality Test
Before establishing the VAR model, the
Granger causality test is first conducted on the
variables to confirm whether there is a mutual
influence between them. The results in Table 3
show that at the 10% significance level, the null
hypothesis that there is no causal relationship
between the two variables is rejected. Therefore,
the VAR model can be constructed.
Table 3. Results of Granger Causality Test

Null Hypothesise Obs F-
statistic Prob.

DLNEUA does not
Granger Cause
DLNCEA

823 0.266 0.953

DLNCEA does not
Granger Cause
DLNEUA

2.01 0.063

5.3 VAR Model
The results of VAR estimation are shown in
Table 4. The price transmission from China’s
carbon market to the EU carbon market exhibits
a distinct unidirectional and lagged positive
effect. As indicated in the table, changes in
China’s carbon price exert a significant positive
impact on the EU carbon price with a 4-period
lag, meaning that a 1% increase in China’s
carbon price will drive a 0.1155% rise in the
EU carbon price after four periods. This
medium-term transmission effect may stem
from China’s core position in the global supply
chain— the increase in carbon costs caused by
China’s emission reduction policies gradually
affects the carbon cost expectations of EU
enterprises through international trade chains.
Meanwhile, the transmission effects at other lag
orders are insignificant, suggesting that the
transmission is concentrated in a specific
medium-term phase and reflecting the time lag
in the transmission of policy effects.
In contrast, there is a complete absence of price
transmission from the EU carbon market to
China’s carbon market. In the DLNCEA
equation, all lagged terms of the EU carbon
price (DLNEUA(-1) to DLNEUA(-6)) are

statistically insignificant (maximum |t| =
1.52401 < 1.96). For instance, the coefficient of
DLNEUA(-1) is -0.063587 (t = -1.18370). This
asymmetry highlights the relative isolation of
China’s carbon market, which can be attributed
to three main factors: first, China’s capital
account controls restrict the flow of
international arbitrage capital; second, the
domestic quota allocation mechanism,
dominated by free allocation, weakens
enterprises’ sensitivity to external price signals;
third, China’s carbon market is still in the early
stage of development with a relatively low level
of market integration.
Figure 2 presents the characteristic roots of the
VAR model. It can be observed that all
characteristic root values lie within the unit
circle, which indicates that the constructed
VAR model has good stability, and the
conclusions derived from this model are valid.

Table 4. Results of VAR Model
DLNCEA DLNEUA

DLNCEA(-1)
-0.182620** -0.063587
-0.03486 -0.05372
[-5.23891] [-1.18370]

DLNCEA(-2)
-0.065741* -0.02301
-0.03542 -0.05459
[-1.85584] [-0.42150]

DLNCEA(-3)
-0.01549 0.088941
-0.03543 -0.0546
[-0.43721] [1.62901]

DLNCEA(-4)
0.022209 0.115500**
-0.03544 -0.05461
[0.62670] [2.11493]

DLNCEA(-5)
-0.017808 0.017456
-0.03543 -0.0546
[-0.50261] [0.31970]

DLNCEA(-6)
0.106544** -0.076234
-0.03482 -0.05366
[3.05953] [-1.42056]

DLNEUA(-1)
0.000742 -0.024669
-0.02274 -0.03505
[0.03263] [-0.70382]

DLNEUA(-2)
0.0042 0.019191
-0.02262 -0.03485
[0.18571] [0.55064]
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DLNEUA(-3)
-0.006917 0.052967
-0.02255 -0.03475
[-0.30672] [1.52401]

DLNEUA(-4)
-0.017791 0.016375
-0.02253 -0.03471
[-0.78981] [0.47173]

DLNEUA(-5)
-0.000385 -0.107686**
-0.02253 -0.03472
[-0.01709] [-3.10176]

DLNEUA(-6)
0.007152 -0.03573
-0.02264 -0.03488
[0.31595] [-1.02425]

C
0.000802 0.000309
-0.00063 -0.00097

-0.182620** -0.063587

Figure 2. Scatter Plot of Characteristic Roots

5.4 Impulse Response and Variance
Decomposition
To explore more precisely the dynamic linkages
and hierarchical influence of variables between
global and domestic carbon market prices, this
paper employs the impulse response function
for further in-depth analysis, with the results
presented in Figure 3.

Figure 3. Impulse Response
Through a comparative analysis of the two
impulse response function graphs, it can be
observed that changes in China’s carbon market
price exert a significant price transmission
effect on the global carbon market price. In the
first graph, the red dashed line—representing
the response of DLNEUA to shocks from

DLNCEA—exhibits a large fluctuation
amplitude with a peak response value of
approximately 0.0035, coupled with a
noticeable trough in the initial phase. This
indicates that shocks from China’s carbon
market price have triggered relatively intense
reactions in the global carbon market. In
contrast, while the blue solid line—standing for
the response of DLNCEA to shocks from
DLNEUA—also reaches its peak in the 4th and
5th periods, its peak response value is merely
0.0015, and the overall fluctuation remains
relatively mild. In the second graph, this trend
is further corroborated: the red dashed line
fluctuates drastically, whereas the blue solid
line stays relatively stable. These findings
demonstrate that in the price transmission
mechanism, China’s carbon market exerts a
substantial influence on the global carbon
market, while the impact of global carbon
market price changes on China’s carbon market
price is relatively weak.
Further analysis reveals that the transmission of
global carbon market price changes to China’s
carbon market price features higher intensity
and more persistent effects. In comparison, the
transmission effect of China’s carbon market
price changes on the global carbon market price
appears rather limited. This discrepancy may be
attributed to factors such as the maturity,
market size, and policy environment of the
global carbon market. As a more mature and
open market, the global carbon market’s price
changes are more likely to attract worldwide
attention and elicit responses, thereby exerting a
notable impact on China’s carbon market.
To conduct an in-depth analysis of the impact
level of global carbon market prices on
domestic carbon market prices, this paper
carries out a variance decomposition analysis
based on the VAR model, with detailed results
presented in Table 5. The global carbon
emission market exerts a significant price
transmission effect on China’s carbon emission
market. The existence of such a transmission
effect verifies that the global carbon market and
China’s carbon market are not isolated from
each other but rather exhibit close linkage.

Table 5. Variance Decomposition

period
Variance

Decomposition of
S.E-DLNCEA

DLNCEA(
%)

DLNEUA
(%)

Variance Decomposition
of S.E-DLNEUA

DLNCEA(
%)

DLNEU
A(%)

1 0.018 100.000 0.000 0.028 0.071 99.929
2 0.018 100.000 0.000 0.028 0.247 99.753
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3 0.018 99.996 0.004 0.028 0.250 99.750
4 0.018 99.982 0.018 0.028 0.636 99.364
5 0.018 99.921 0.079 0.028 1.005 98.995
6 0.018 99.918 0.082 0.028 1.003 98.997
7 0.018 99.908 0.092 0.028 1.198 98.802
8 0.018 99.906 0.094 0.028 1.215 98.785
9 0.018 99.906 0.094 0.028 1.217 98.783
10 0.018 99.905 0.095 0.028 1.220 98.780

6. Conclusions and Suggestions
Based on the empirical analysis above, it can be
observed that there exists a relatively stable
equilibrium relationship between the price of
EU Allowance (EUA) futures contracts and that
of domestic emission allowance futures
contracts over a long period. However, in the
short term, the price transmission effect
between these two prices exhibits a marked
asymmetry. The Granger causality test shows
that the price transmission between China’s
carbon market and the global carbon market
presents a unidirectional guiding relationship:
when the EUA price is subjected to external
shocks, such shocks can be effectively
transmitted to the domestic emission allowance
market. Specifically, fluctuations in global
carbon market prices exert a significant and
relatively timely positive impact on the price of
domestic emission allowance contracts.
Conversely, the price transmission in the
reverse direction shows a distinct lag. This
indicates that China’s carbon market has a
delay in responding to global market price
fluctuations, and the effectiveness of its reverse
feedback mechanism is relatively weak.
Given that the global carbon market exerts a
notable price transmission effect on China’s
carbon market while China’s influence on the
global carbon market remains relatively limited,
China is placed in a disadvantageous position in
terms of carbon price positioning. To enhance
China’s competitiveness in the global carbon
market, it is imperative to learn from the mature
carbon trading models of developed countries.
This will not only help establish an independent
carbon pricing mechanism but also effectively
mitigate the operational risks faced by market
participants. As the global carbon market is
fraught with high uncertainties, China’s carbon
prices are highly susceptible to external impacts
to a certain extent. To address global climate
change issues and elevate the international
influence of China’s carbon market, the
following recommendations are put forward:

To strengthen the regional synergy effect of the
carbon market, efforts should be made to
promote cross-regional connectivity with the
carbon markets of neighboring countries. By
establishing a regional carbon trading system,
formulating unified market norms and
regulatory mechanisms, and at the same time
safeguarding the operational independence of
each member state’s carbon market, regional
interconnection can not only enhance the global
radiation capacity of China’s carbon market but
also expand the variety of carbon credit
products available to enterprises within the
region.
By collaborating with neighboring countries to
advance joint carbon emission reduction
initiatives, China can introduce its
advantageous low-carbon technologies and
mature emission reduction schemes into the
environmental protection projects of other
countries. This will help local enterprises
improve energy efficiency and reduce
greenhouse gas emissions. The carbon credit
quotas generated through such cooperation can
serve as a bilateral trade resource, which will
not only assist partner countries in fulfilling
their emission reduction commitments but also
create new growth opportunities for the
expansion of the global market supply and
China’s domestic low-carbon industry.
Establish a cooperation and exchange
mechanism for carbon trading markets with
surrounding countries. In terms of advancing
regional carbon market capacity building, some
neighboring countries have not yet established
mature policy systems and technical support
frameworks. Therefore, it is necessary to
improve their carbon market development level
through enhanced technical exchanges and
experience sharing, thereby helping these
countries build their own carbon trading
systems.
To advance the internationalization process of
the carbon market, accelerate the in-depth
integration and connectivity between China’s
voluntary emission reduction mechanism and
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the global market, and actively participate in
international carbon credit development and
trading activities to strengthen the international
recognition of domestic carbon credit products.
Meanwhile, establish a cooperation mechanism
featuring government guidance as the core,
enterprises as the primary implementing entities,
and market-oriented operation.
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