158 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026

Research on Personalized Teaching Recommendation System
Based on Big Data from Educational Platforms

Mengying Lu", Kai Cheng
School of Computer and Artificial Intelligence, Henan University of Finance and Economics,
Zhengzhou, China
*Corresponding Author

Abstract: There are now thousands of
courses available on online learning
platforms. Increased options are better but
can be too much to handle students. Most
people find it difficult to identify exactly what
suits them. To solve this problem, we created
a personalized course recommendation
system. Spring Boot is used as the backend,
Vue.js as the frontend, and MySQL as the
database in this system. Two strategies have
been combined. Firstly, it identifies users
with like-minded interests. Secondly, it
incorporates famous courses that are
well-rated by most learners. Combined, these
techniques enhance relevance and coverage.
The platform is compatible with various
forms of learning materials such as video
courses, reading lists, and case studies.
Progress of users can be seen on the intuitive
dashboards. They have the opportunity to
connect and exchange ideas using a built-in
community space. During the testing process,
all new users were given helpful
recommendations (100 percent coverage).
The response time was kept short, with an
average of less than 145 milliseconds. The
system is lightweight, inexpensive, and simple
to install. It is a sensible match to small and
middle-sized schools.

Keywords: Online Learning; Personal
Suggestions; Finding Similar Users; New
User Problem; Mixed Suggestion Method;
Spring Boot

1. Introduction

Online learning has grown quickly in recent
years. There are now more options for courses.
Students now have many choices, but they also
have too much information. It's hard to compare
similar courses. Many people find it hard to find
the right one for them. Smaller education
platforms are more affected by this problem.

http://www.stemmpress.com

They don't have much money or technology.
The usual ways of listing courses are no longer
good enough for people's individual needs.
Personalised recommendation systems are a
good solution. Research in this area has
improved all over the world. International
studies have evolved from basic methods [1] to
sophisticated models using deep learning and
knowledge graphs [2]. These approaches are
better at understanding what users like. Chinese
research focuses on integrating with local
education systems [3,4]. It looks at ways to
combine contextual awareness with knowledge
tracking. The focus is still on making teaching
and learning better together.

The current solutions have three main problems.
High-performance systems often need expensive
equipment [1,2]. They are too complicated for
smaller institutions. Most recommendation
models focus on video content. They also
overlook other materials, such as documents and
case studies [3,4]. New wusers are another
problem because the system doesn't have any
data to make useful suggestions. Also, it is often
hard to understand how recommendations are
made.

This research tries to solve these problems by
creating a simple, reliable system that can make

personalised recommendations. The most
important things we have achieved are:
We developed a new way of making

recommendations that combines different types
of data. It combines user similarity analysis with
popularity and timeliness rules. This is good for
new users and works well with limited data.

A system was created to manage resources in a
consistent way. It uses a MySQL database to
connect courses, materials and cases in a logical
way. You can now combine different types of
resources and suggest them together.

The system was made simpler by using a
full-stack architecture. It is built with Spring
Boot, Vuejs and MySQL, and works on

Copyright @ STEMM Institute Press

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026 159

standard browsers. You can use it on one
computer at a time, which makes it good for
smaller platforms.

Visualisation and interaction features were
added. ECharts makes clear data dashboards to
make things more transparent. A space where
people can learn together helps students and
teachers talk to each other.

The system was tested thoroughly and these
tests showed that it works well. Tests showed
that the software worked properly, was easy to
use and was stable even when a lot of people
were using it.

2. Introduction to Related Technologies

To build a simple recommendation system, this
study chose a backend using Spring and a
frontend using Vue.js. Two methods of
recommendation were combined: finding
similar users and applying basic rules.

It was important to keep the system affordable.
So, they didn't use complicated systems like
Hadoop. Instead, a lighter option called Spring
Boot was selected.

Spring Boot simplifies installation. Simply one
note will configure servers and databases
automatically. Less XML configuration is
required. It also has an internal Tomcat server.
It allows putting the entire application into a
single JAR file enabling quick deployment. The
time spent on the development and maintenance
of the site is reduced.

MyBatis is a tool that is utilized to process data.
The SQL statements are stored separately in the
XML files. This isolates the business logic with
the data access. It allows simplifying and
improving the SQL. MyBatis is also useful in
managing complicated queries. It is capable of
working with more than one condition
simultancously. The results get directly
connected to Java objects and the data work
more quickly.

The frontend has been implemented using
Vue.js, based on the MVVM pattern. Data
updates trigger automatic screen changes. This
method enables rapid updates to
recommendation lists. With reusable
components such as navigation bars and cards,
the code will remain clean and simple to update.
Communication between The frontend and
backend is managed by Axios and a request
interceptor ensures data exchanges are clean and
uniform.

In order to create understandable data, ECharts

Copyright @ STEMM Institute Press

have been introduced. They display teaching
statistics in form of charts, namely pies and
lines. They indicate the number of different
subjects available to a student. Zooming
functionality enables the administrators to view
the overall trends and small particulars. Normal
tables cannot represent them as accurately.
A typical challenge in education is the lack of
information for new students with no
background data. Therefore, a lightweight
hybrid recommendation engine was developed.
User—based collaborative filtering is the main
method. It looks at past actions—what users
saved or rated. Similar users are found, and their
liked items are recommended. To measure
similarity between users, the Jaccard coefficient
is used. The formula goes like this:
. N1,

Slm(uav)Jaccard:m (1)
The formula is based on what users enjoy. To
give an example, suppose that User A
bookmarks both "Python Basics" and "Data
Analysis" and User B bookmarks both "Python
Basics" and "Machine Learning"- their
similarity score would be 0.5 (sharing one of
two unique courses). This score can be used to
identify similar wusers. The system could
recommend a course to User A such as Machine
Learning because User B enjoyed it [5,6].
The recommendation process of new users
differs. Let me give an example of a newly
registered person, say Xiao Wang. No history
means that the system displays popular courses
such as College English Test Prep and newer
ones like Al Tools Guide to him. Once he saves
three courses into the system, it detects that he
likes programming. It would then start
recommending other courses that are similar to
what users liked, e.g., Java Advanced [7].
We check how well the system is working in
simple ways. First, let's look at the 'hit rate'. If 8
out of 10 recommended courses get clicked,
that's 80% accuracy. Also, the quantity of the
courses offered is essential. In case a user is able
to love 20 programming courses and he finds
only five, it means there are some issues with
the coverage. Lastly, the speed of the results
matters. Clicking on recommend should give the
results within less than 150 milliseconds.
Caching allows speeding up things. As an
example, when the homepage is opened by User
Li, the system will first scan the memory cache
to find popular courses such as the Photoshop
Tutorials. In case they are not available, the

http://www.stemmpress.com

160 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026

database cache table is checked. It implies that
recommendations do not have to be recalculated
every time. The system recalculates only when a
user adds new bookmarks. These examples
demonstrate how the system reacts to various
users and remains fast and accurate.

3. System Requirement and
Architecture Design

The system strictly follows the Role-Based
Access Control (RBAC) model, dividing users
into three roles: student, teacher, and
administrator. The core functional requirements

for each role are shown in Table 1.

Analysis

Table 1. The Core Functional Requirements

Core
Role functional Functional description
module
IPersonalized recommendation: The homepage displays "Guess You Like" courses
based on a hybrid strategy.
Front-end Resource retr'ievalz Supports multi-dimensional filtering and keyword search by
Student application course, material, a1.1d case.
subsystem Learn.lng corpmumty: Support for posting help-seeking posts and sharing learning
experiences in the forum.
Personal Center: Centralized management of information such as "My Favorites"
and "My Postings".
Resource Production: Publishing courses ; uploading courseware materials, and
Work submitting teaching cases.
Teacher Subsystem Data dashboard: View the access popularity and student interaction of published
resources through ECharts charts.
Content review: Oversee and manage posts within the learning community.
User Management: Manages student and teacher accounts, supports password reset
Back-end and other operatipns. o . '
Administrator{Management Resoyrce ‘allocatlon:.En'sure that data dlctlonarles. such as course type anq material
Subsystem classification are mamtame@ to enhance the effectwene:ss of front-enq retrieval.
System management: Publishing the course information and checking the system
operation logs (sys_log).

The system is also using standard RBAC
permissions along with JWT-based
authentication. Upon logging in, you will
receive a digital token which is signed with your
password. All subsequent requests should
contain this token, including requests to access
course materials or submit assignments. Spring
Security verifies these tokens. In order to make
it more secure, the passwords are encrypted by a
method known as berypt before being saved in
the database. Even in case of data breach, your
initial password remains safe. All sensitive
actions are logged by the system. An example
might be whenever teachers alter course content
or students change their passwords. Such logs
allow you to ensure that you are following the
regulations concerning what may be done with
educational data.

There are three key types of information that all
have the same management. The first section
covers such fundamentals as user identities,
their roles and the dictionaries that apply to the
entire system. An example of this would be
stating that first-year biology students and
senior faculty members are not the same. Then

http://www.stemmpress.com

come teaching materials, such as course
descriptions and unstructured documents, such
as video lectures and case studies. We use a
combination of storage solutions here.
Databases store information about the files
whereas the files themselves are saved in a
secure online storage area. Finally, interactive
data records actions performed by users, e.g.,
resource downloads, forum participation. Such
behavior patterns influence recommendation
algorithms directly.

A simple three-layer B/S structure is used in the
system design. They each have their own role to
play, but they all collaborate. The presentation
layer uses Vue.js to build dynamic user
interfaces. The course recommendation panel is
one of the examples. When users add new
interests, it is updated immediately, so there is
no need to constantly reload the page. The
business layer, fundamentally, deals with
intricate logic using Spring Boot. Features such
as creation of personal learning plans and
implementation of access control are handled by
this layer. Structured data is stored in the
persistence layer using MySQL, and special

Copyright @ STEMM Institute Press

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026 161

storage of media files is done using specialized
systems. MyBatis allows making database
queries more efficient allowing querying related
tables. This design is extremely flexible. E.g.
updating the recommendation engine mostly
affects the business layer without affecting the
rest of the components. As illustrated in Figure
1, three distinct parts of the system support
different sets of people; learning portals support
students, authoring platforms support teachers
and monitoring consoles support administrators.
All of these combine to give a well-organized
educational system. Balance between security,
functionality, and ease of use is maintained.

System Management
« Info publishing & logs

Personal Center
= Favarites, Posts, Password

Figure 1. The Specific Architecture

3.1 Student Learning Portal

This subsystem is the primary interface of
learners. It assists them in finding the courses
and interacting with them. The most critical
element is adaptive recommendation module. In
case you are a new registrant and have not done
much work on the system, the system would
present you with the most popular courses as
well as the latest resources. After students finish
lessons or save materials, the system begins to
use what is known as collaborative filtering. It
uses the interests of people with similar interests
to create so-called Recommended items to you.
Suppose a student frequently views
programming tutorials; he/she could receive
recommendations of more advanced courses in
algorithms that other students enjoy.

3.2 Instructor Dashboard

It is a specific workspace of teachers. It assists
teachers in creating, organizing and analyzing
instructional materials. Teachers may publish
organized modules of courses and upload
additional materials such as presentation slides
and case studies. Resources are all categorized
through a predetermined system of categories
created by the administrator so that the data can

Copyright @ STEMM Institute Press

be consistently organized. Analytics tools that
are integrated convert usage statistics into
straightforward images. The line graph could
depict the fluctuation in the number of viewers
to the video lectures over a period of weeks.
Heatmaps could indicate the times at which the
highest number of assignments are sent out. This
is evidence-based information that facilitates the
changes in the process of teaching and the most
optimal use of resources.

3.3 Administrative Control Panel

The subsystem is similar to the nervous system
of the platform, as it allows platform
stewardship. The administrators are charged
with the responsibility of ensuring that critical
frameworks are maintained. They consist of
assigning user roles, generating institutional
taxonomies, and posting system-wide messages.
Detailed audit records record significant events,
e.g., a change in curriculum or revision of access
policy. Specialized permission settings allow
various users to access what they require:
teaching assistants have access to drafts of
courses, whereas only lead instructors have
access to publish the final version. The three
separate pieces operate in concert via shared
service layers. Whenever a student posts a query
regarding Calculus in the forum, the appropriate
teachers receive an automatic notification.
Simultaneously, the recommendation system
makes use of the data to refine its
recommendations in the future. Such systems
form a digital learning environment when
combined, which is responsive to the
requirements of users.
4. Implementation Architecture and
Deployment

4.1 System Deployment Framework

To address the resource limitations common to
middle-sized schools and colleges, the
architecture uses a unified, single-node
deployment scheme. The Vue.js front-end app,
Spring Boot back-end services, and MySQL
database exist on a single consolidated server.
External communication is controlled by the
Nginx reverse proxy server which serves static
asset requests directly and routes dynamic API
calls to backend processors.

The core business logic and recommendation
algorithms are wrapped into the Spring Boot
runtime environment, which runs on an

http://www.stemmpress.com

162 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026

embedded Tomcat instance. Relational tables
hold structured academic records, and
multimedia records like instructional videos are
kept as filesystem objects with indexed
metadata pointers. This combined solution helps
to decrease infrastructure costs but remains
responsive in normal loads of usage.
Benchmarking shows that it performs
consistently with more than 400 simultaneous
users on a standard cloud setup.

4.2 Operation of the
Recommendation Engine

The recommendation engine, which is the
intelligent core of the platform, uses a
context-sensitive dual-mode approach. Initial
queries will cause checking of cache to validate
existing valid recommendations. Without a
cache, behavioural analytics decides what
recommendation mode should be used. Users
with less than five documented interactions
have their suggestions generated using heuristic
rules. They are the combination of global
trending articles, which are measured by
viewership, and temporally new articles. More
seasoned users trigger collaborative filtering
processes. The system calculates the similarity
coefficients by comparing the history of
resource engagement between the users. The
students who follow the same interest
trajectories (e.g. consecutive enrollment in data
science coursework) get higher similarity
scores. Then, recommendations are created
depending upon the preferred resources of the
user’s nearest behavioural neighbors and are
constantly updated via further monitoring of the
interaction.

The similarity between users is measured using
something called the Jaccard coefficient (see
equation 1 in Section 2). First, the system
identifies the top K users with the highest
similarity scores as the target user's neighbours.
Next, it brings together all the courses that these
neighbours have liked, but which the target user
has not yet tried. Each candidate course is given
a predicted interest score. This is calculated as
the sum of the similarity weights of all the
neighbours who have liked that course. Finally,
a personalised recommendation list is created by
ranking these courses based on their predicted
scores.

Finally, the list is delivered to the front end in
JSON format. The front end then dynamically
renders the list within the 'Guess You Like'

Hybrid

http://www.stemmpress.com

module.

4.3 Core Database Structure

Our database is designed to manage a variety of
learning resources. It also keeps track of how
users interact with these resources. It was
designed following standard relational database
principles.

The table designed to record user activities is
called 'useraction'. Each record in the table has
specific info: a unique behaviour ID, the
student's ID, the ID of the resource that was
used, and the resource type. The resource type
tells you if it's a course, study material, or a case
exercise. We also keep a record of the action
that's been done, like a click, a save or a rating.
Every action gets a weight score and a record of
the time it happened.

For example, if a student saves a Python course,
the system logs it as resource type 1 (course)
with the action type "collect." If the same
student opens a PDF lecture note, it's logged as
type 2 (material) with the action type "click". If
you log your actions like this, it helps the system
work out what kind of content each user is
interested in.

To make recommendations faster, we added a
recommendation cache table. This table stores
pre-computed suggestion lists so they can be
retrieved quickly. Each cache entry includes the
student's ID, the recommended course ID and
the algorithm that generated the suggestion. It
also explains why the course was recommended,
e.g. "similar users liked this" or "this is currently
trending." We set an expiration time for each
entry to keep suggestions up to date.

The courses and materials are really easy to find
and use. Each course entry has info like the title,
description and difficulty level. Courses are
linked to a category tree, so a topic like "Data
Science" can have subtopics such as "Machine
Learning" and "Statistics." Teaching materials
are organised in the same way — PDFs, slides
and videos are all sorted consistently.

4.4 Building Key Features

The front end of the website contains tabs and
filters that allow easy navigation of the site. The
<el-tabs> component makes various sections of
courses, materials and cases available. Using the
el-tree component, users may explore further
topics. As an illustration, they can start with a
topic on Programming and then move to Python
and then to Web Development.

Copyright @ STEMM Institute Press

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026 163

Axios is used to retrieve data enabling real-time
updates. Charts that provide visual information
assist users in seeing patterns. An example
would be a bar chart that shows the number of
students who completed various courses last
month, or a line chart that shows how many
people accessed the forum every week. ECharts
draws the charts and updates them as they are
drawn. The learning forum has its own database
tables. It allows asking questions, responding to
others, and reading discussions. All the items
they have saved are displayed in their profile
under the heading of My Collections which
consists of courses, articles and videos. The list
of their forum posts can also be seen under the
heading of My Posts. The back-end, behind the
scenes, has implemented MyBatis to create
smart queries. For instance, when a student
chooses Computer Science and writes database,
it will search all the same resources in various
courses, materials, and cases. All the findings
are presented in one list that is readable.

5. Experiment and Result Analysis

In order to test the effectiveness of our hybrid
recommendation strategy, we conducted some
thorough experiments. We also tested how well
the system functions under high load. Each of
the tests was performed using a controlled
simulation environment.

The test environment comprised the following
key components: an an Intel Core i7-12700H
processor, 16GB of RAM, and a 512GB SSD.
The system was run on Windows 11, JDK 17,
and MySQL 8.0. To determine whether or not
the interfaces were working properly, we used
Postman. Jmeter assisted us in determining how
the system performed when many users were
logged in simultaneously.

It was hard to obtain the real user information,
so we created our own dataset. We created 200
fictitious student accounts. To each person, we
assigned a grade level and a major. Then, we
included 500 learning resources. They were
courses, study materials, and practice cases. All
the resources were labeled with category labels.

In order to be more realistic, we fabricated
2,000 user actions. They involved favorites,
clicks, and ratings. They were distributed
randomly. This resulted in a map of a
user-resource interaction. It was as though it
were the history of actual users. To observe how
the system reacts, we came up with three test
situations. Firstly, a new user registers.

Copyright @ STEMM Institute Press

We will name this user A. On login, A is
presented with eight popular courses in the
Guess You Like area. There are examples of
these courses such as Java Basics and Data
Structures. The recommendation coverage in
this case is 100%. It means that the fallback
rules, which depend on popularity and novelty,
do actually assist the new users to start.

Next, we tested an engaged user. User B saves
three bookmarks about front-end development.
After refreshing the page, the list of
recommendations now includes titles like
"Practical Vue.js" and "Advanced CSS3." The
system explains this by saying: "Recommended
based on your bookmarking habits." It clearly
learns from what users explicitly choose.
Thirdly, we looked at a user who had not been
active. User C only clicked one item. The
recommendations that appear are a hybrid list.
There are two suggestions that are connected to
that single click. The other six are general
popular courses. This shows that the hybrid
approach can work even when there is not much
data. It gives you personal tips and reliable
suggestions.

Finally, we compared our hybrid method with
basic collaborative filtering. We measured two
things: how many users we could help and how
quickly the system replied. The hybrid strategy
gave suggestions to everyone, even new users.
The basic method didn't work for newcomers.
The response time was quick, at less than 150
milliseconds. You can find all the results in
Table 2.

Our analysis shows clear results. A basic
approach to collaborative filtering is entirely
ineffective for new users. It doesn't cover these
cases at all. Our hybrid strategy, on the other
hand, works in all situations. This is possible
thanks to its rule-based fallback mechanism.

We also looked at how the system performs over
time. We did a seven-day monitoring
experiment. Each day, 50 test users carried out
normal learning activities. They made around
500 new behaviour records every day. During
the week, the system got between 82% and 85%

of recommendations right. There was no
significant drift.
After the third day, the number of

recommendations that were actually used was
still more than 70% of the time. This shows that
the system learns what users like. Memory
usage increased by only 8% over the baseline.
This shows that you can manage your resources

http://www.stemmpress.com

164 Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026

well and that you don't have any memory leaks.

collaborative filtering. For regular users, the

The recommendation cache table is very average response time drops by about 31%. The
important. This design makes the hybrid performance in real time gets much better, but it
strategy respond much faster than pure stays accurate.
Table 2. The Evaluation Metrics
. CoveragelCoverage
Strategy Type Test Scenario Rate Rate Remarks
Pure Collaborative New User (No 0% 120 ms Completely ineffective, with severe

Filtering (User-CF) |[Historical Behavior)

cold start problem

Pure Collaborative |Regular users (with

While the performance is good, the

article (new/existing users)

o R .
Filtering (User-CF) rich behaviors) 85% | 210 ms | computation time increases with the
volume of data
Mixed strategy in this Full scenario 100% | 145 ms fast response, no blind spots

We also did stress tests using something called
JMeter. The main screen was tested with 100
users using it at the same time. These users got
into the system within 5 seconds. The results
show that the system can respond to an average
of 145 milliseconds and handle 450.2 requests
every second. The number of errors stayed the
same at 0.00%.

The server's resources were used at a steady
level. The CPU was used at an average of
around 35% of its capacity. Memory
consumption showed no unusual spikes. These
findings show that the lightweight standalone
deployment can handle the typical concurrency
needs of small to mid-sized education platforms.
The hybrid algorithm uses caching, so response
times stay under one second even when there is
a lot of traffic. There were no big drops in
performance or timeouts. Overall, the system is
stable and always available.

As well as objective metrics, we gathered user
opinions. Thirty real users tested the system for
one week. They gave their feedback using a
5-point Likert scale. On average, users gave 4.2
out of 5 for the recommended content. The
'Relevance of recommended content' section
received the highest rating of 4.5 points.
"Interface response speed" was the second most
important, with 4.3 points.

It is interesting to note that new users liked the
recommendations they received when they first
joined. The first thing they did was to try out
some popular courses, which turned out to be a
great way to get started.

6. Conclusion

Research shows that personalised teaching
recommendation systems are really useful.
These systems leverage data from learning
platforms. They help to match students with the

http://www.stemmpress.com

right resources more efficiently.

Our tests showed excellent results. Every user
got recommendations, whether they were new or
returning. The system achieved full coverage.
Response times came quickly, with an average
of less than 145 milliseconds between each one.
The performance stayed the same even when we
tested it during busy periods with lots of users
online at the same time.

The recommendation model we built is easy to
use and can be adapted to suit different needs. It
mostly uses something called 'collaborative
filtering' to find patterns among users. When
there is not much data, rule-based backups are
used. For example, a new student might see the
most popular courses first. If you save maths
content, you might get suggestions for related
topics like statistics or logic later on.

All learning materials are managed through one
interface. Teachers and students can see how
well things are going with the help of these
dashboards. Charts can show which courses are
popular or how students are doing in different
parts of the course.

But there are still some limitations. The current
recommendations mainly focus on clear actions.
If a student rates a course or adds it to their
favourites, the system will notice.However,
more refined actions, such as watching a video
again or taking additional time to complete a
quiz, are not fully utilized. The system does not
also indicate a change in a students
understanding over time. Future revisions may
comprise models of knowledge tracing.
Consider the case of a student beginning with
simple algebra. With experience the system can
gradually introduce calculus exercises. In the
future, we have a few excellent choices.
Techniques such as deep learning would allow
us to discover connections between various

Copyright @ STEMM Institute Press

Journal of Intelligence and Knowledge Engineering (ISSN: 2959-0620) Vol. 4 No. 1, 2026 165

fields. Graph networks represent how topics are
related to one another in various courses. Large
language models may turn learning into a
conversation. When a student is uncertain about
a physics principle, they can pose questions in
plain language and be directed to explanations.
Lastly, combining various forms of learning
data may result in a more detailed image. Forum
discussions, video watch patterns, and
assignment scores may all be combined to
promote the individualized way forward of
every student.

References

[1] Walls C. Spring Boot in Action. Translated
by Ding Xuefeng. Beijing: People's Post
and Telecommunications Press, 2016.

[2] Schafer J B, Frankowski D, Herlocker J, et
al. Collaborative filtering recommender
systems. //The Adaptive Web. Springer,
Berlin, Heidelberg, 2007: 291-324.

Copyright @ STEMM Institute Press

[3] Wang Guoxia, Liu Heping. Overview of
Personalized Recommendation System.
Computer Engineering and Application,
2012, 48(07): 1-4.

[4] Adomavicius G, Tuzhilin A. Toward the
next generation of recommender systems: A
survey of the state-of-the-art and possible
extensions. IEEE Transactions on
Knowledge and Data Engineering, 2005,
17(6): 734-749.

[5] Xiang Liang. Recommender Systems in
Practice. Beijing: People's Post and
Telecommunications Press, 2012.

[6] Huang Xiaodong. Design and
Implementation of Database Access Layer
Based on MyBatis. Information Technology
and Informatization, 2021(08): 120-122.

[7] Zhang Xue, Sun Zhihui. Collaborative
Filtering Recommendation Algorithm Based
on Hybrid Strategy. Computer Science,
2019, 46(02): 23-28.

http://www.stemmpress.com

