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Abstract: Although large language models
(LLMs) offer new possibilities for
personalized instruction, most educational
implementations rely on static prompting
that ignores learners’ moment-to-moment
cognitive and metacognitive needs.
Grounded in Vygotsky’s Zone of Proximal
Development, this study introduces a
four-layer dynamic AI scaffolding system
that adaptively regulates LLM support
during complex problem solving. In a
randomized controlled experiment, 60
non-mathematics majors solved series
convergence proof problems under either
dynamic scaffolding or static prompting
conditions. Learners receiving dynamic
scaffolding reported lower extraneous
cognitive load, demonstrated superior
far-transfer performance, and engaged in
more metacognitive questioning. Within the
dynamic condition, metacognitive
questioning was positively associated with
transfer outcomes. These results indicate
that dynamically operationalizing ZPD in
generative AI tutors is more effective than
static prompting for fostering deep learning
and knowledge transfer.
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1. Introduction
The integration of Artificial Intelligence (AI),
particularly Large Language Models (LLMs),
into education is rapidly reshaping the landscape
of intelligent tutoring systems (ITS). Models
such as GPT-4 demonstrate an unprecedented
capacity to generate coherent explanations,
provide step-by-step guidance, and engage in

open-ended dialogue, making them powerful
potential partners in learning [1]. In structured
domains like mathematics, research indicates
that well-prompted LLMs can effectively tutor
students and guide multi-step reasoning [2].
Despite this promise, a critical limitation
persists. Most current LLM-based educational
applications employ astatic and generic
interaction mode, relying on fixed prompt
templates that are invariant to the learner’s
ongoing cognitive state [3]. From an
educational psychology perspective, this
“one-size-fits-all” approach risks inducing
extraneous cognitive load, a type of mental
effort that does not contribute to learning and
can actively hinder it [4]. An AI tutor that
cannot perceive a learner’s current level of
understanding may offer overly vague hints
when concrete guidance is needed or supply
redundant information when the learner is
ready for higher-order reflection. This “support
mismatch” represents a new source of
ineffective instructional design within
AI-powered learning.
The key to resolving this contradiction lies in
making AI support dynamic and adaptive,
capable of mimicking the “scaffolding”
behavior of an expert human tutor. Lev
Vygotsky’s theory of the Zone of Proximal
Development (ZPD)provides the foundational
framework [5]. The ZPD is defined as the
distance between a learner’s ability to solve
problems independently and their potential
ability when guided by a more knowledgeable
other. Effective instruction, or scaffolding,
must be dynamically adjusted: providing
support when necessary and gradually
withdrawing it as the learner’s competence
increases. While ZPD and scaffolding have
been extensively discussed in traditional
pedagogy and earlier, rule-based ITS [6], a
significant research gap remains: How to
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translate the essence of dynamic scaffolding
into operational, computable rules that can be
deeply integrated into a conversational
LLM-based tutoring system.
Therefore, this study sits at the intersection of
educational psychology and artificial
intelligence. It addresses the core research
question: How can the classic ZPD paradigm
be transformed into a computational framework
that drives an LLM to provide dynamic,
adaptive learning support? We investigate this
within the context of university-level
mathematical proof learning (specifically,
series convergence proofs), a domain
characterized by high cognitive demand and
clear hierarchical skill structures. Through the
design, implementation, and empirical testing
of a four-layer dynamic AI scaffolding system,
this research explores the framework’s efficacy
in optimizing cognitive load and enhancing
transfer of learning. Our goal is to provide both
empirical evidence and a concrete design
exemplar for the next generation of
“theory-informed” intelligent educational
technology.

2. Theoretical Foundation and Related Work

2.1 Core Educational Psychology Theories
2.1.1 Vygotsky’s zone of proximal
(1) Development and Scaffolding Theory
Vygotsky’s socio-cultural theory posits that
learning first occurs through social interaction
before being internalized. The ZPD is the
central concept, defining the region where
instruction is most effective [7]. Scaffolding,
derived from this theory, refers to the
temporary, adaptive support provided by a
teacher or peer to help a learner cross the ZPD.
This process involves diagnosing the learner’s
current level, providing tailored support (e.g.,
modeling, questioning, task structuring), and
gradually transferring responsibility as the
learner’s ability grows—a cycle of “fading”
support. Its effectiveness hinges on continuous
diagnosis and responsive adjustment [8].
(2) Guidance for this study: This theory provides
the foundational design philosophy. Our AI
system must be a dynamic diagnostician and
responsive agent, not a static information
repository. The “four-layer prompt framework”
is an operationalization of this philosophy,
aiming to approximate the ZPD and simulate the
“fading” process.

2.1.2 Sweller’s cognitive load theory
Cognitive Load Theory (CLT) is a cornerstone
of instructional design, based on the severe
limitations of human working memory. It
distinguishes three types of cognitive load [9]:
(1) Intrinsic Cognitive Load: Imposed by the
inherent complexity and element interactivity of
the learning material.
(2) Extraneous Cognitive Load: Caused by
suboptimal instructional design or presentation
(e.g., confusing layout, split attention) and does
not aid learning.
(3) Germane Cognitive Load: The mental effort
devoted to schema construction and automation,
which directly facilitates learning.
The goal of instructional design is to manage
total load by minimizing extraneous load,
optimizing intrinsic load (e.g., through
segmenting), and maximizing germane load.
The “expertise reversal effect” further
underscores the need for adaptive support, as
instructional techniques that help novices can
hinder experts.
(4) Guidance for this study: CLT provides our
primary evaluation metric (extraneous load) and
core design principles. Our hypothesis that
dynamic scaffolding reduces extraneous load is
rooted here. The system design aims to minimize
irrelevant load through a clear interface and
precise language, while the dynamic mechanism
manages total load by offering structured
support during high intrinsic load and prompting
reflection to encourage germane processing.
2.1.3 Metacognition and self-regulated
(1) Learning Theory
Metacognition—"cognition about
cognition"—encompasses knowledge about
one’s own thinking and the active monitoring
and regulation of cognitive processes [10].
Self-Regulated Learning (SRL)is its application
in academic settings, describing the cyclical
process where learners set goals, select strategies,
monitor progress, and adjust their approach.
Strong metacognitive skills are strongly
correlated with academic achievement, and
fostering these skills is a key challenge for ITS
design [11].
(2) Guidance for this study: This theory sets a
higher-order goal for our AI system: to cultivate
the learner’s capacity for independent
problem-solving, not just solve the immediate
problem. This is directly instantiated in theL3
(Metacognitive Guidance) prompt layer,
designed to externalize strategic thinking (e.g.,
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“Why did you choose this method?”) and prompt
self-monitoring, thereby acting as a
“metacognitive tutor.”

2.2 Artificial Intelligence in Education
2.2.1 The evolution of intelligent tutoring
systems
ITS have evolved through distinct generations:
Model-based tutors (e.g., Cognitive Tutors),
which relied on hand-coded expert models and
production rules to provide precise feedback but
were costly to build and inflexible; Data-driven
adaptive learning systems, which use
educational data mining for personalization but
often lack deep explanatory dialogue;
LLM-based generative dialogue tutors, which
offer unparalleled generality and ease of
deployment but typically lack an underlying
pedagogical strategy, acting as reactive
information sources rather than proactive
pedagogical guides[12].
2.2.2 Prompt engineering in education
Prompt engineering is crucial for harnessing
LLMs for educational purposes. Current
research focuses on role-playing (“Socratic
tutor”), advanced techniques like
chain-of-thought prompting to elicit reasoning,
and optimizing prompts for specific tasks like
explanation or feedback generation. However,
most work treats prompts as static, single-turn
inputs, optimizing for immediate output quality
rather than designing a dynamic sequence of
pedagogical strategies across a sustained
interaction [13].
2.2.3 The research gap: integrating dynamic
theory with dynamic prompting
A significant disconnect exists. While learning
science offers rich theories of adaptive support
(ZPD, CLT), they remain largely descriptive for
LLM contexts. Conversely, AI research focuses
on output quality, not long-term pedagogical
outcomes like transfer or metacognitive growth.
There is a pressing need for a systematic
framework that translates dynamic psychological
principles into a computable decision-making
process for LLM interaction, addressing: (1)
how to quantify learner state from interaction
data, (2) how to map this state to an optimal
support strategy, and (3) how to execute this
strategy via targeted prompting.

2.3 The Cognitive Process of Mathematical
Problem Solving
2.3.1 Cognitive model of mathematical proof

Mathematical expertise requires the integration
of procedural knowledge (how to execute steps)
and conceptual knowledge (understanding why
and when to apply them). Experts possess rich,
interconnected cognitive schemas, allowing
flexible strategy selection. Novices often have
fragmented knowledge, possessing procedures
without the conceptual understanding for proper
application or transfer. Proof construction
involves a cyclical process of planning(strategic),
executing(tactical), and verifying [14], with
novices struggling to move beyond local
execution details.
2.3.2 Common obstacles and sources of
cognitive load
Key obstacles in mathematical learning align
with CLT:
(1) Working Memory Overload: The high
element interactivity in proofs strains limited
working memory, creating high intrinsic load.
(2) Inefficient Problem-Solving Search: Poor
problem representation leads to means-ends
analysis, generating high extraneous load [15].
(3) Deficient Metacognitive Monitoring: Failure
to plan, monitor, and evaluate one’s approach
consumes resources wastefully [16].
(4) Inert Knowledge: Lack of conceptual
understanding prevents transfer, as learners
cannot adapt known procedures to novel
situations [17].
These obstacles highlight the need for external
support that can manage load, bridge the
conceptual-procedural gap, and provoke
metacognitive reflection—the precise goals of
our dynamic scaffolding system.

3. Dynamic AI Scaffolding System Design

3.1 Overall Architecture
The system implements a
Perceive-Decide-Actclosed loop, comprising
five core modules (see Figure 1):
(1) Learner Module: An internal state
representation (task progress, help count,
inferred confusion/query type).
(2) Task Interface Module: Presents problems,
captures help requests and free-form queries.
(3) Decision Engine Module: The “brain.”
Applies a rule-based logic to the learner state to
select a support level.
(4) Structured Prompt Library Module: A
repository of pre-authored prompt templates for
each of the four support levels, tailored to
specific task steps.
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(5) AI Model (LLM) Module: The “strategy
executor.” Given the prompt template from the
library, it generates the final, contextualized
response to the learner.
(6) The interaction flows cyclically: Learner acts
→ State updated → Decision Engine selects
level → Corresponding prompt retrieved →
LLM generates final response → Response
presented to learner.

Figure 1. System Architecture Diagram

3.2 Four-Level Operationalization of ZPD
The scaffolding concept is operationalized into
four discrete levels:
Level 1 (L1): Direct Guidance
Provides explicit steps, definitions, or formulas.
Goal: Reduce initial intrinsic/extraneous load,
establish a correct starting point.
Example: “For series ∑ n/2ⁿ, the ratio test is
often effective. Try calculating lim_{n→∞}
|a_{n+1}/a_n|.”
Level 2 (L2): Heuristic Questioning
Poses guiding questions focused on key
concepts.
Goal: Focus attention, promote active reasoning,
encourage germane processing.
Example: “You simplified the ratio to (n+1)/(2n).
What is its limit as n→∞? If L<1, what does the
ratio test conclude?”
Level 3 (L3): Metacognitive Guidance
Prompts reflection on strategy selection and
process evaluation.
Goal: Foster metacognition and self-regulated
learning.
Example: “What was your clue to choose the
ratio test? Would you choose the same method
for ∑ n²/2ⁿ? Why?”
Level 4 (L4): Motivational & Emotional Support
Provides encouragement and task
decomposition.
Goal: Manage frustration, maintain self-efficacy,
reduce emotionally-induced extraneous load.
Example: “Limit calculations require care.

You've persevered well. Let's break it down: first,
ensure the ratio formula is correct, then focus on
simplifying.”

3.3 Dynamic Decision Rule Engine
The engine maps real-time interaction data to a
support level using a transparent rule set.
Inputs: help_count, current_step, query_text,
detection of words from a negative
emotional_lexicon (e.g., “too hard”,
“confused”).
Rule Set (Prioritized Order):
pseudocode
IF emotional_lexicon.detect_nega"tive(quer" "y"
_"t" "ext)THENRETU" RN L4
ELSE IF help_count == 1 THEN RETURN L1
ELSE IF query_text.contains("why") OR
query_text.contains("how to choose") THEN
RETURN L3
ELSE IF current_step ==
"calculation_execution" THEN RETURN L2
ELSE IF help_count >= 2 THEN RETURN L3
ELSE RETURN L2 // Default rule
Output: A tuple <Selected_Level,
Corresponding_Prompt_Template>.

3.4 Technical Implementation
A fully functional prototype was developed
using Pythonand the Gradio library for the web
interface. For experimental control and to isolate
the effect of the dynamic logic itself, the system
did not call a live LLM API during the study.
Instead, it used apre-scripted, high-quality
prompt library (stored in JSON format, keyed by
task, step, and level). The Decision Engine’s
output directly triggered the retrieval and display
of the corresponding pre-authored text. This
ensured consistency in response quality across
all participants, with the sequence and timing of
support levels being the only manipulated
variable.

4. Experimental Method

4.1 Experimental Design
A between-subjects, randomized controlled trial
was conducted.
Independent Variable: AI support type with two
levels: Dynamic Scaffolding (Experimental
Group) vs. Static Prompting (Control Group).
The control group received prompts randomly
chosen from L1 or L2 libraries, irrespective of
their interaction context.
Dependent Variables:
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(1) Cognitive Load: NASA-TLX total score.
(2) Transfer Learning: Score on a novel post-test
problem.
(3) Help-Seeking Behavior: Metrics from
dialogue logs (frequency, proportion of
metacognitive questions).
Control: Participants were randomly assigned.
The task set, interface, and total time were
identical across groups. The experiment
followed a single-blind procedure.

4.2 Participants
60 first-year undergraduate students from Hechi
University, all non-mathematics majors (28 male,
32 female, mean age=18.5, SD=0.7),
participated. All had completed a calculus course
covering series basics but had no formal training
in proof techniques. Participants were randomly
assigned to the Dynamic n=30 or Static n=30
group.

4.3 Materials and Tools
Learning Tasks: Three series convergence proof
problems of ascending difficulty:
(T1) ∑ 1/n² (p-series);
(T2) ∑ n/2ⁿ (ratio test);
(T3) ∑ (ln n)/n² (comparison test).
Post-test Transfer Task: One novel problem: ∑
n²+1 /(n³√n), requiring algebraic simplification
before recognition as a convergent p-series.
Measurement Tools:
NASA-TLX Scale (Chinese version): Measured
total cognitive load after the learning phase
(Cronbach’s α = .82 in this study).
The Dynamic AI Scaffolding System: As
described in Section 3.
Automated Logging System: Recorded all
interactions (timestamp, user_id, task, query,
triggered rule, system response).

4.4 Procedure
The 85-minute experiment proceeded as follows:
(1) Pre-test & Group Assignment (10 mins):
Background questionnaire, followed by
automated, concealed random assignment to a
group.
(2) Learning Phase (45 mins): Participants
solved T1, T2, T3 sequentially (15 mins each).
Unlimited help requests were allowed, answered
according to group assignment.
(3) Cognitive Load Measurement (5 mins):
Participants completed the NASA-TLX scale.
(4) Post-test Phase (15 mins): Participants solved
the transfer problem without any AI assistance.

(5) Brief Interview & Debrief (10 mins): A
subset of participants provided subjective
feedback.

4.5 Data Analysis Plan
Data were analyzed using SPSS 26.0 α=.05.
(1) Cognitive Load: Independent samples t-test
on NASA-TLX scores.
(2) Transfer Score: Independent samples t-test
on post-test scores (0-5point rubric, inter-rater
reliability > .85).
(3) Help-Seeking Behavior:
a. Independent t-test on total help counts;
b. Dialogue coding into three categories: Direct
Answer Request, Conceptual Clarification,
Metacognitive/Strategic Question (Cohen’s
Kappa > .80);
c. Chi-square test comparing the proportion of
metacognitive questions between groups;
d. Pearson correlation between metacognitive
question proportion and post-test score within
the dynamic group.

5. Results

5.1 Descriptive Statistics
Random assignment was successful. No
significant differences were found between
groups in age, gender, or prior mathematics
grade (all *p*> .05). Descriptive statistics for
help-seeking are shown in Table 1. The
dynamic group had a non-significantly higher
mean total help count.

Table 1. Descriptive Statistics for
Help-Seeking Behavior

Group
Total Help
Count
(M±SD)

Task 1
Help

Task 2
Help

Task 3
Help

Dynamic 8.20 ± 2.31 2.23 ±
0.81

2.87 ±
0.92

3.10 ±
1.05

Static 7.63 ± 2.84 2.40 ±
0.97

2.57 ±
1.07

2.67 ±
1.21

*t*(58) 0.86 -0.73 1.16 1.49
*p* .395 .471 .252 .142

5.2 Hypothesis Testing Results
5.2.1 Hypothesis
(1) H1 (Cognitive Load):Supported. The
dynamic group M=52.30,SD=8.71 reported
significantly lower cognitive load than the static
group M=59.17,SD=9.84 .t(58)=2.87,p=.006,
Cohen’sd=0.74.
(2) H2 (Transfer Learning):Supported. The
dynamic group M=3.63,SD=1.03 scored
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significantly higher on the post-test than the
static group M=2.57,SD=1.27,t(58)=3.21,p=.002,
Cohen’sd=0.83.
(3) H3 (Metacognition): Supported.
5.2.2 Trend and correlation
A repeated-measures ANOVA on the
metacognitive question proportion in the
dynamic group showed a significant main effect
of task order F(2,58)=5.43,p=.006,η²=0.16 .
Post-hoc tests confirmed the proportion in Task
3 was significantly higher than in Task 1 p=.012.
Within the dynamic group, the overall
metacognitive question proportion was
positively correlated with post-test score
r(28)=.42,p=.010.

5.3 Exploratory Findings
5.3.1 Task completion time
The dynamic group spent slightly more total
time on the learning phase (38.5±4.2 min) than
the static group (36.8±5.1 min), though this
difference was not statistically significant
t(58)=1.41,p=.164 . This may suggest deeper
engagement.
5.3.2 Emotional language
After the third help request, the static group used
significantly more negative emotional words in
their queries than the dynamic group
χ²(1)=4.12,p=.042.

6. Discussion

6.1 Interpretation of Key Findings
The results robustly support the efficacy of a
theory-driven dynamic scaffolding system. The
significant reduction in cognitive load (H1)
demonstrates that “right-timing, right-granularity”
support is key to managing extraneous load.
Static prompts often create “support mismatch,”
forcing learners to expend extra effort to
interpret unhelpful aid, thereby increasing
extraneous load. The dynamic system’s adaptive
logic aims to provide a “tight fit,” reducing
friction and freeing working memory resources
for genuine learning.
The superior transfer performance (H2) and the
rising trend and positive correlation of
metacognitive questioning (H3) jointly
illuminate the pathway to deeper learning. The
system does not just answer questions; it
systematically structures the interaction to
provoke higher-order thinking. By responding to
strategic confusion with L3 prompts (e.g., “What
was your clue?”), it externalizes the expert’s

internal metacognitive dialogue. The increasing
proportion of metacognitive questions indicates
learners were internalizing this reflective stance,
which facilitates the transformation of inert
procedural knowledge into flexible, transferable
strategic schemas.

6.2 Theoretical Contributions
This study makes a primary contribution by
providing a computational model that
operationalizes ZPD and scaffolding within an
LLM-based dialogue system. It moves these
powerful psychological metaphors from
descriptive principles to an implementable,
rule-based framework for real-time pedagogical
decision-making.
Furthermore, it highlights that in AI-supported
learning, the granularity and the timing of
support are two critical, separable design
dimensions that jointly influence cognitive and
metacognitive outcomes. Our framework shows
that even with a simple rule engine (controlling
timing), significant learning gains can be
achieved over static prompts (which only fix
granularity), deepening our understanding of
how “pedagogical presence” can be
algorithmically instilled.

6.3 Practical Implications
For educators and instructional designers, this
work demonstrates a viable path to embodying
classic pedagogical wisdom in modern AI tools.
It argues that the effectiveness of an AI tutor
depends as much on its theoretically-grounded
interaction design as on the raw power of its
underlying model.
For educational technology developers, it offers
a lightweight, interpretable, and practical
alternative to building opaque, data-hungry
adaptive models. The rule-based approach is
transparent (crucial for educational equity), easy
to debug and modify, and requires no training
data, making it a highly feasible engineering
paradigm for developing effective ITS.

6.4 Limitations and Future Directions
6.4.1 Limitations
A sample drawn from a single university,
limiting generalizability.
A focus on mathematical proofs, requiring
validation in other domains (e.g., programming,
scientific writing).
Reliance on relatively superficial interaction
proxies (help count, keywords) for state
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inference.
6.4.2 Future research
Incorporate multi-modal data (e.g., eye-tracking,
facial expression analysis, electrodermal activity)
to create a more fine-grained and accurate model
of learner cognitive-affective state.
Explore hybrid decision mechanisms that
combine the interpretability of rules with the
adaptability of reinforcement learning, allowing
the system to optimize its scaffolding policies
based on long-term learning outcomes.
Generalize the framework to a wider array of
disciplines and task types, testing its utility as a
general-purpose design methodology for
generative AI in education.

7. Conclusion
This study successfully translated Vygotsky’s
theory of the Zone of Proximal Development
into a functional dynamic AI scaffolding system
and provided rigorous empirical evidence for its
effectiveness in the context of learning
mathematical proofs. The results demonstrate
that an AI prompt design informed by and
dynamically aligned with educational
psychology principles—specifically targeting
cognitive load management and metacognitive
activation—is significantly more effective than
generic, static prompting in reducing extraneous
mental effort and fostering transferable learning.
This work provides both a concrete
computational framework and a strong empirical
foundation for the development of more
intelligent, responsive, and ultimately more
humane educational AI.
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