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Abstract: The CO concentration in the
sintering flue gas during the sintering process
is an important indicator reflecting the
combustion state and permeability. Accurate
short-term prediction of CO concentration
helps in process stability and anomaly
detection. However, in industrial
environments, numerous sensor variables,
significant data noise, and operational drift
complicate  high-dimensional = modeling,
making rapid deployment challenging. This
paper proposes a lightweight short-term
prediction framework based on causal dilated
convolutions (TCN) for sintering flue gas data
with a two-minute sampling interval to
predict the target variable, cleaned_co. First,
based on process mechanisms, relevant
variables related to flue gas and exhaust are
aggregated and selected, forming an input set
with only 11 features. Next, multivariate
sequences are constructed into supervised
samples using a sliding window approach,
employing causal convolutions to prevent
future information leakage, and dilated
convolutions to expand the temporal receptive
field, thereby capturing the temporal
dependencies between combustion and
airflow. Experiments on real-world datasets
validate the effectiveness of the proposed
method. the results demonstrate that the
model tracks the overall trend of CO
concentration well within a 90-minute
historical window, achieving stable prediction
performance in the normal operating range.
This method provides a concise and feasible
technical approach for online modeling and
rapid deployment of the sintering process,
with fewer features.
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Causal Dilated Convolution (TCN)

1. Introduction

Sintering is a critical front-end process in steel
metallurgy, and its combustion intensity, layer
permeability, and heat and mass transfer
processes directly affect the quality of sintered
ore, fuel consumption, and pollutant emissions
levels[1] . In the long process and highly
coupled conditions of sintering production,
achieving online prediction and early warning of
key process indicators without incurring
additional hard measurement costs has been an
important research direction in process control
and intelligent manufacturing[2] . In recent years,
a relatively systematic research framework has
been formed around mechanism-based modeling
and data-driven modeling of the sintering
process, with a particular emphasis on modeling
robustness and deployability under varying
operating conditions[3] .

Among the monitoring indicators for sintering
flue gas, carbon monoxide (CO) concentration is
a critical signal that reflects the combustion state
and the completeness of gas-solid reactions:
when there 1is local oxygen deficiency,
incomplete combustion, or uneven airflow
distribution in the material layer, CO
concentration often increases and is closely
related to the movement of the combustion zone,
permeability, and exhaust system. Atmospheric
CO primarily originates from industrial flue gas
emissions, and its generation mechanism is
mainly attributed to the incomplete combustion
of fossil fuels[4] . As the core link in the steel
production chain, iron ore sintering emits
approximately 50 to 60 million tons of CO
annually, leading to about 70% of the steel
industry's annual pollution tax being associated
with CO emissions. With the gradual
implementation of CO pollutant regulation
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policies and the advancement of the "dual
carbon" strategy, carbon reduction has become a
primary policy goal across industries. Pei
Yuandong et al. [5], by analyzing the generation
and distribution patterns of CO in the sintering
process, emphasized that achieving CO
reduction under current sintering conditions
requires addressing both source control and
process optimization. Li Qiankun et al. [6]
conducted industrial trials on a sintering
machine and, through enhanced process control,
achieved a significant reduction in CO emission
concentration in a 550 m? sintering machine,
with a decrease of 782 mg/Nm?. Li Jie et al. [7]
summarized the generation mechanisms of CO
in sintering flue gas, including incomplete
combustion of fuel and reduction reactions, and
proposed source reduction strategies by
analyzing emission patterns.

Regarding CO emissions and generation
mechanisms, influencing factors, and control
strategies in sintering, there have been
specialized  reviews and  experimental
simulations in the metallurgical field, pointing
out significant correlations between CO and
oxygen supply levels, fuel combustion, material
layer structure, and airflow organization[8-10] .
CO can also serve as an important basis for
process state diagnosis and emission control.
Meanwhile, industrial sites commonly use online
monitoring and CEMS systems to continuously
collect sintering flue gas data, providing a data
foundation for data-driven prediction[11-14] .
From an engineering application perspective,
achieving minute-level short-term CO prediction
could help operators identify early signs of
combustion  anomalies,  deterioration  of
permeability, and fluctuations in the exhaust
system. This would provide forward-looking
information for adjusting parameters such as air
volume, ignition, and material moisture, thereby
reducing the risk of amplified fluctuations
caused by delayed adjustments[15-16] . In
current intelligent sintering research, typical
tasks include "end combustion zone position (e.
g., BTP) prediction" and "quality soft
measurement (e. g., composition, FeO, etc.)": for
example, machine learning-based = BTP
prediction  systems and decision rule
construction have been validated in sintering
process control; some studies have also proposed
intelligent control frameworks aimed at BTP. In
quality soft measurement, deep models like
DNN and LSTM have been applied to sintering
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composition prediction, combined with feature
selection and anomaly handling; and semi-
supervised time series feature extraction models
focused on sintering quality have also been
explored[17-19] . These studies show that using
multivariate process time series to construct
"soft measurement/soft prediction" models is a
feasible and effective technical approach.
Although numerous sensors are typically
deployed in sintering sites, actual modeling faces
the following challenges:

(1) High-dimensional and complex correlation
structure: the raw variables include valve
positions, flow rates, pressures, temperatures,
material layer status, and multi-stage airbox
information. Directly using high-dimensional
inputs leads to model complexity, difficult
parameter tuning, and high deployment costs.

(2) Widespread noise and outliers: Sensor drift,
missing data, and transient anomalies can
introduce heavy-tail errors, causing the model to
overfit to a small number of outliers during
training, which affects generalization.

(3) Non-stationarity of operating conditions:
Changes in raw materials, moisture, and
operating strategies can lead to data distribution
shifts over time, requiring the model to have
certain robustness and transferability.

(4) Temporal dependencies and lag effects: CO
response to exhaust, air supply, material layer,
and moisture exhibits delays and thermal inertia,
necessitating the model to capture multi-scale
dependencies in the time dimension.

To balance prediction performance with
engineering deployability, a minimal
input+tlightweight deep model approach is
chosen: On one hand, key variables are selected
and aggregated based on process correlations to
minimize the number of features; on the other
hand, a Temporal Convolutional Network (TCN)
is used for short-term prediction. TCN offers
advantages such as parallel computation, stable
training, controllable receptive fields, and ease
of deployment, making it suitable for industrial
time-series tasks.

The main contributions of this paper include:
Proposal of a minimal feature construction
strategy for CO prediction in sintering flue gas,
aggregating numerous sensor variables into 11
key operational features to reduce data
dimensionality and deployment complexity.
Development of a sliding window-based
supervised learning framework with causal
dilated convolutions to prevent future
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information leakage,
short-term prediction.
Visualization and error distribution analysis
revealing that the model fits well in the normal
range but exhibits amplitude compression in the
peak segments, providing a basis for future
improvements (such as robust loss, peak
segment indicators, and event threshold
evaluation).

enabling minute-level

2. Research Methodology
Development

and Model

2.1 Task Definition and Data Organization
Let the multivariate sensor sequence be denoted

as X,e R” ,and the target variable cleaned co be

denoted as y, ,This paper adopts a sliding

window approach to construct supervised
samples:the input consists of the past L
records(each representing 2
minutes),corresponding to 6 minutes of
historical data, and the output is the cleaned co
value H steps ahead:

Input :[ X X ]—>Target:y, +H )

To ensure a realistic industrial prediction
scenario, the data is split into training, validation,
and test sets in chronological order.
Standardization of input features is performed
using only the training set statistics.

t—L+1°° "

2.2 TCN Convolutional Neural Network
Model

To model industrial time-series dependencies,
this paper adopts the Temporal Convolutional
Network (TCN) architecture for prediction. the
model flowchart is shown in Figure 1. TCN is a
convolutional neural network architecture
designed specifically for sequence modeling,
where its core is composed of multiple stacked
1D convolution blocks. Causal convolutions are
employed to ensure that the output at any given
time depends only on the current and past inputs,
thus avoiding future information leakage. To
capture longer-range dependencies, dilated
convolutions are used, with the dilation rate (e.
g., 1, 2, 4) progressively increasing at each layer,
thus enhancing the temporal receptive field
without significantly increasing computational
cost.

Causal convolution is the foundation of TCN,
ensuring that the model's output at time step t
only depends on the information from the input
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sequence at time steps t and earlier. In a standard
1D convolution, without padding, the output
may depend on future inputs. To ensure
causality, TCN adds zero-padding to the left side
of the convolution kernel, making the output
dependent only on past and current inputs. Each
convolution block consists of two layers of

causal dilated convolutions with residual
connections.
Input —4 : aus.m:mm : ]] i{e:;:ﬁ;
SN S Q.
o)

Residual
Connection

Output ‘

Residual Layer Q

Figure 1. Overall architecture of the TCN

Assuming the input sequence
is x = (x,,X,,...,X;) ,the convolution kernel size

is k,and the weights are w=(w,,w,,...,w,) ,the
output of the causal convolution is given by:

k
Vi = Z Wi Xy k=i (2)
=1

To capture long-range dependencies without
increasing network depth or the number of
parameters, TCN introduces dilated convolutions.
By skipping certain input elements, dilated
convolution enlarges the receptive field (the
range of input values the model can consider).
the dilation factor d controls the sampling
interval of the convolution kernel. Typically, in
TCN, the dilation factor grows exponentially
across network layers (e. g., 1, 2, 4, 8,...),
allowing the shallow layers to capture local
patterns and deeper layers to capture global
patterns. the receptive field size increases
exponentially with the number of layers,
enabling the model to handle very long
sequences.
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TCN consists of multiple residual blocks stacked
together, with each residual block containing
two dilated causal convolution layers, an
activation function (e. g., ReLU), weight
normalization, and dropout (for regularization).
the residual connections help train deep
networks and mitigate the vanishing gradient
problem. the entire TCN model can be
represented as a stack of residual blocks, with
the final regression output produced using the
hidden state at the last time step:

j>t+H :fé([Xt—LJrl""’Xt]) 4)

2.3 Feature Construction

Considering that sintering CO concentration is
highly correlated with the flue gas flow field,
oxygen supply, exhaust strength, material layer,
and moisture, this paper aggregates and selects
features from the original sensor data set to
construct the feature set, as shown in Table 1.
Let the input be the windowed time-series

block H e R®”“" (batch size B, number of
variables C, feature length T).
Table 1. Characteristic Variable
Number Feature
Flue 02 mean
Flue temp mean
Flue negp mean
Mainfan flow
Mainfan press mean
gas flow col
Sintering circulating fan inlet
flow detection
3 Sintering machine speed L1
setting
9 Bed thick mean
10 Moist col
11 Water total

N[N [R[W[N[—

3. Experimental Results and Analysis
3.1 Experimental Setup

The model training uses Mean Squared Error
(MSE) as the loss function, and the optimal
model parameters are selected based on the
validation set. Considering that industrial data
often exhibits heavy-tail distributions and spikes,
the formulas are as follows:

z| Xobs Y model |
MAE = =! (5)
n
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Z(Xobs - Xmodel )2
RMSE =& (6)
n
In addition to MAE and RMSE, it is
recommended to use R?(coefficient of
determination) to reflect the explanatory power
and comparability, and WAPE as a commonly
used relative error metric in industry to avoid the
instability of MAPE in low-value ranges.

3.2 Performance Comparison

The experimental dataset used in this study is
sourced from the actual operation process of a
260 m? sintering machine in a large steel
enterprise. the production line is equipped with
an advanced Distributed Control System (DCS)
and real-time online monitoring equipment,
enabling precise continuous monitoring and data
recording of key sintering process indicators,
such as temperature, pressure, flow, and
composition. the data is exported from the
historical database, covering the time period
from July 1, 2025, to July 30, 2025, with a total
of 30 days of complete production records.

To ensure the richness and comprehensiveness
of the model training samples, the sampling
interval is set to 2 minutes after removing the
time delay effects, and data during equipment
maintenance and downtime is excluded,
resulting in 20, 563 raw sample records. These
samples cover hundreds of feature columns,
including raw material properties, sintering
process state parameters, and operation control
parameters. To enhance the accuracy and
robustness of the Al prediction model, a detailed
data preprocessing step is carried out to
effectively remove outliers and missing values,
thus minimizing the negative interference of
these noises on the prediction performance of
CO concentration in sintering flue gas. This
ensures the reliability of data quality and
provides a solid foundation for subsequent
machine learning model training.

Data preprocessing includes: Time alignment
and sorting: Parsing the time column as datetime
and sorting it in ascending order. Numerical
conversion and missing value imputation:
Converting input features and targets to
numerical values and using forward filling (ffill)
to handle short-term missing values. Valid
sample exclusion: Removing samples with
remaining missing values. Training set
standardization: Standardizing input features
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using the training set mean and variance through
z-score normalization to avoid data leakage.

For feature construction, to balance prediction
performance and engineering deployability, this
study aggregates numerous raw sensors into 11
key operational features, including:

Main duct: Average O, average temperature,
average negative pressure.

Main exhaust fan: Sum of north and south inlet
flow, average inlet pressure.

Flue gas flow: Desulfurization inlet flue gas flow
(using exhaust outlet flow as a substitute when
missing).

Process state: Circulating fan inlet flow
detection, machine speed setting, material layer
thickness (average of 1-5), post-second mixing
moisture, total water addition (first+second
mixing).

3.3 Influence of Window Length L

The window length L affects the amount of
historical information available to the model.
Table 2 presents the comparison of MAE and
RMSE on the test set

Table 2. MAE/RMSE
L(records) [Historical length MAE | RMAE
15 30min 850.606 (1028.372
30 60min 580.16 [803.456
45 90min 463.115 1671.707

When L increases from 15 to 45, the error
significantly decreases, indicating that the short-
term evolution of cleaned co is influenced by
thermal inertia and transport inertia, requiring a
longer historical context. However, when L
continues to increase (to 60/90), the error
increases, suggesting that excessively long
history introduces operational drift and irrelevant
fluctuations, making the learning target non-
stationary, which reduces generalization.

3.4 Comparative Experiment Analysis

As shown in Figure 2, a comparison is made
between the Temporal Convolutional Network
(TCN) and Convolutional Neural Network
(CNN) for the sintering flue gas cleaned co
prediction task. the experiment used industrial
furnace operation data, selecting the first 1, 500
samples of the test set for analysis, with a 2-
minute prediction step (H=1) and a sliding
window length of 90 minutes (L=45).

From the comparison chart (Figure 1), it is
evident that the TCN model provides smoother
predictions, closely aligning with the true values,
especially during dramatic changes in the
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sintering flue gas signal. This suggests that TCN
is effective in capturing the temporal
dependencies in the time series data. In contrast,
the CNN model shows significant deviations,
especially in capturing the peaks and valleys of
the signal, indicating its limitations in processing
time series data and its inability to accurately
capture dynamic changes.

According to the evaluation metrics, the TCN
model outperforms the CNN model in RMSE,
MAE, and R? further verifying its superior
performance in predicting future values of
sintering flue gas based on historical data. While
the CNN model can capture some patterns, it
performs poorly in capturing more complex
dynamic changes, resulting in lower prediction
accuracy.

This analysis indicates that model selection is
crucial for time-series prediction tasks. Models
specifically designed to handle temporal
dependencies, such as TCN, perform better than
traditional CNN architectures in handling

complex time-related signals.
Test True vs Models Pred (first 1500 samples) | L=45, H=1

— True

9000 -
TCN Pred

----- CNN Pred
8000 -

7000 4

' 6000 -

= WA i Wy

0 200 400 600 800 1000 1200 1400
Sample index (window)

Figure 2. Comparison Chart of TCN and
CNN Results

cleaned co

3.5 Visualization Result Analysis

Furthermore, Figure 3 shows a scatter plot of the
true CO concentration values versus the
predicted values. the x-axis represents the true
values, and the y-axis represents the predicted
values. the points are distributed around the
reference line y=x showing a clear linear trend.
This indicates that the TCN model successfully
captured the main patterns in the data, especially
within the 2000-5000 concentration range,
where the predicted and true values are highly
consistent.

As shown in Figure 4, the residual histogram
further quantifies the distribution characteristics
of the prediction error. the x-axis represents the
residual (predicted value minus true value), and
the y-axis represents the sample count. the
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distribution is approximately bell-shaped, with
the peak near zero, and the count reaches about
500. This reflects the model's unbiased nature,
with most prediction errors falling within a
controllable range.
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Figure 3. Scatter Plot of True vs. Predicted
Values
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Figure 4. Histogram of Residual Distribution

4. Conclusion

This study develops a "minimal feature—
lightweight model" approach for minute-level
short-term prediction of CO in sintering flue gas
based on two-minute sampled data. By
aggregating numerous raw sensor data points
according to process mechanisms and using only
11 key features (such as duct
O/temperature/negative pressure, exhaust and
flue gas transport, machine speed, material layer
thickness, moisture, and water addition), stable
predictions were achieved, demonstrating the
strong representational power of this feature set
for CO evolution.

The TCN model, designed to avoid future
information leakage through causal dilated
convolutions, successfully captured the dynamic
dependencies of combustion and transport
processes with a multi-scale temporal receptive
field. the experimental results show that the
window length significantly impacts
performance, following a  pattern  of
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"improvement followed by degradation" from
short to long historical windows. the optimal
performance was achieved with L=45 (about 90
minutes), with a test MAE of 463.115 and
RMSE of 671.707. This indicates that the short-
term changes in cleaned co depend not only on
recent fluctuations but also on longer time scales,
such as thermal and flow inertia. However,
excessively long windows introduce operational
drift and irrelevant information, reducing
generalization. Further visualization analysis
shows that the model follows the overall trend of
CO well, with the error concentrated near zero,
reflecting a good fit to normal operating
conditions. the prediction curve was smoother
than the true values, with systematic
underestimation in the peak value sections and
long-tailed residuals, suggesting that peak
condition samples are sparse, the MSE objective
is biased toward the mean section, and that
potential time delays and sensor misalignment
issues remain key factors affecting accuracy.
Overall, this method achieves usable online
prediction capabilities with minimal feature cost,
providing a simple and effective modeling
pathway for monitoring, early warning, and
control in the sintering process. It also lays the
foundation for further improvements in peak
prediction performance through robust loss,
high-value segment weighting, or threshold
event evaluation. Although this method achieves
usable short-term prediction of CO with minimal
features, limitations remain, such as the
amplitude compression and underestimation of
peak values in the prediction curve. This
highlights the issues of sparse peak condition
samples and the MSE objective's preference for
the mean section. the long-tailed residual
distribution suggests that large error events
caused by sudden changes in operating
conditions or sensor anomalies still exist.
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