STEMM Institute Press
Science, Technology, Engineering, Management and Medicine
Identification of Glycosylation-Related Gene Signatures in Astrocytes from Glaucoma Using GEO Datasets
DOI: https://doi.org/10.62517/jmhs.202505404
Author(s)
Dingqiao Wang1,3, Minyi Zhu2, Peidong Yuan2, Yiyu Xie2, Bingying Lin3, Hongzhi Yuan2,*
Affiliation(s)
1Department of Ophthalmology, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China 2Department of Ophthalmology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China 3State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China. *Corresponding Author
Abstract
Glycosylation critically regulates protein folding, stability, and cellular signaling in neurodegenerative disorders; however, its role in glaucoma pathogenesis remains underexplored. We aimed to investigate differentially expressed glycosylation-related genes (GRGs) in glaucoma astrocytes and explore their connections with immune responses, an aspect that has not been systematically addressed in prior computational studies. We integrated two glaucoma-related microarray datasets (GSE2378 and GSE9944) comprising 13 glaucoma and 42 control human astrocyte samples. Differential expression analysis and functional enrichment assessments were conducted using standard bioinformatics approaches. We developed protein–protein interaction networks, identified essential genes, and evaluated immune-related gene expression through single-sample Gene Set Enrichment Analysis (GSEA). The study identified 42 differentially expressed GRGs and seven hub genes (SEC23A, BET1, ARCN1, COPB2, VCP, UBC, and SEC61B) involved in protein trafficking and secretory pathway regulation. Functional analysis revealed significant enrichment in glycoprotein metabolic processes and inflammatory pathways. GSEA highlighted the involvement of Wnt/β-catenin signaling and interleukin-23 pathways. Six hub genes demonstrated substantial diagnostic capacity. Analysis of Immune cell infiltration revealed significant alterations in eight immune cell populations, with activated CD4+ T cells showing positive correlations with all hub genes. These findings suggest that astrocyte glycosylation contributes to glaucoma progression and may be associated with immune dysregulation, providing new insights into disease pathogenesis and identifying potential diagnostic biomarkers and therapeutic targets.
Keywords
Glaucoma; Glycosylation-Related Genes; Bioinformatics; Immune Cell Infiltration; Astrocyte Dysfunction
References
[1] Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol. 2016;132(6):807-826. [2] Zhao GL, Zhou H, Guo YH, et al. Modulation of Rac1/PAK1/connexin43-mediated ATP release from astrocytes contributes to retinal ganglion cell survival in experimental glaucoma. Glia. 2023;71(6):1502-1521. [3] Salkar A, Wall RV, Basavarajappa D, et al. Glial Cell Activation and Immune Responses in Glaucoma: A Systematic Review of Human Postmortem Studies of the Retina and Optic Nerve. Aging Dis. 2024;15(5):2069-2083. [4] Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein folding and stability. Biochem J. 2017;474(14):2333-2347. [5] Kang H, Han AR, Zhang A, Jeong H, Koh W, Lee JM, Lee H, Jo HY, Maria-Solano MA, Bhalla M, Kwon J, Roh WS, Yang J, An HJ, Choi S, Kim HM, Lee CJ. GolpHCat (TMEM87A), a unique voltage-dependent cation channel in Golgi apparatus, contributes to Golgi-pH maintenance and hippocampus-dependent memory. Nat Commun. 2024 Jul 11;15(1):5830. [6] Shafi S, Singh A, Gupta P, et al. Deciphering the Role of Aberrant Protein Post-Translational Modification in the Pathology of Neurodegeneration. CNS Neurol Disord Drug Targets. 2021;20(1):54-67. [7] Gonatas NK, Stieber A, Gonatas JO. Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci. 2006;246(1-2):21-30. [8] Hernandez MR, Agapova OA, Yang P, Salvador-Silva M, Ricard CS, Aoi S. Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia. 2002 Apr 1;38(1):45-64. [9] Kompass KS, Agapova OA, Li W, Kaufman PL, Rasmussen CA, Hernandez MR. Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension. BMC Neurosci. 2008 Sep 26;9:93. [10] Nikolskaya T, Nikolsky Y, Serebryiskaya T, Zvereva S, Sviridov E, Dezso Z, Rahkmatulin E, Brennan RJ, Yankovsky N, Bhattacharya SK, Agapova O, Hernandez MR, Shestopalov VI. Network analysis of human glaucomatous optic nerve head astrocytes. BMC Med Genomics. 2009 May 9;2:24. [11] Lukas TJ, Miao H, Chen L, Riordan SM, Li W, Crabb AM, Wise A, Du P, Lin SM, Hernandez MR. Susceptibility to glaucoma: differential comparison of the astrocyte transcriptome from glaucomatous African American and Caucasian American donors. Genome Biol. 2008;9(7):R111. [12] Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013 Jan; 41 (Database issue): D991-995. [13] Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33. [14] Chen L, Ling Y, Yang H. Comprehensive Analysis of the Potential Prognostic Value of 11 Glycosylation-Related Genes in Head and Neck Squamous Cell Carcinoma and Their Correlation with PD-L1 Expression and Immune Infiltration. J Oncol. 2022 Apr 14;2022:2786680. [15] Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012 Mar 15;28(6):882-883. [16] Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 Apr 20;43(7):e47. [17] Ben Salem K, Ben Abdelaziz A. Principal Component Analysis (PCA). Tunis Med. 2021 Avril;99(4):383-389. [18] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012 May;16(5):284-287. [19] Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426. [20] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27-30. [21] Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013 Jul 15;29(14):1830-1831. [22] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012 May;16(5):284-287. [23] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498-2504. [24] Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4(Suppl 4):S11. [25] Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, Qu LH. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017 Jan 4;45(D1):D43-D50. [26] Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014 Jan;42(Database issue):D92-97. [27] Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011 Mar 17;12:77. [28] Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, Xiao T. Identification and Verification of Immune-Related Gene Prognostic Signature Based on ssGSEA for Osteosarcoma. Front Oncol. 2020 Dec 15;10:607622. [29] Aguiar BG, Dumas C, Maaroufi H, Padmanabhan PK, Papadopoulou B. The AAA + ATPase valosin-containing protein (VCP)/p97/Cdc48 interaction network in Leishmania. Sci Rep. 2020;10(1):13135. [30] Shah PP, Beverly LJ. Regulation of VCP/p97 demonstrates the critical balance between cell death and epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget. 2015;6(19):17725-17737. [31] Pontifex CS, Zaman M, Fanganiello RD, Shutt TE, Pfeffer G. Valosin-Containing Protein (VCP): A Review of Its Diverse Molecular Functions and Clinical Phenotypes. Int J Mol Sci. 2024 May 22;25(11):5633. [32] Hasegawa T, Ikeda HO, Gotoh N, Iida K, Iwai S, Nakano N, Kakizuka A, Tsujikawa A. Effect of VCP modulators on gene expression profiles of retinal ganglion cells in an acute injury mouse model. Sci Rep. 2020 Mar 6;10(1):4251. [33] Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2023 Apr;24(4):273-287. [34] Mirza S, Plafker KS, Aston C, Plafker SM. Expression and distribution of the class III ubiquitin-conjugating enzymes in the retina. Mol Vis. 2010 Nov 18;16:2425-2437. [35] Marsh SE, Blurton-Jones M. Examining the mechanisms that link β-amyloid and α-synuclein pathologies. Alzheimers Res Ther. 2012 Apr 30;4(2):11. [36] Khoriaty R, Hesketh GG, Bernard A, Weyand AC, Mellacheruvu D, Zhu G, Hoenerhoff MJ, McGee B, Everett L, Adams EJ, Zhang B, Saunders TL, Nesvizhskii AI, Klionsky DJ, Shavit JA, Gingras AC, Ginsburg D. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7748-E7757. [37] Sun Z, Zeng B, Liu D, Zhao Q, Wang J, Rosie Xing H. S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy. Cell Death Dis. 2020 Aug 6;11(8):650. [38] Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, Mathew R, McHam ML, Fazelat A, Lashkari K, Au NPB, Tse JKY, Li Y, Yu H, Yang L, Stein-Streilein J, Ma CHE, Woolf CJ, Whary MT, Jager MJ, Fox JG, Chen J, Chen DF. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018 Aug 10;9(1):3209. [39] Tezel G. The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res. 2011 Aug;93(2):178-186. [40] Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Front Immunol. 2021 Dec 16;12:803485.
Copyright @ 2020-2035 STEMM Institute Press All Rights Reserved